
AD-AL14 020 TEXAS INSTRUMENTS INC DALLAS CENTRAL RESEARCH LABS F/G 5/9
INTELLIGENT TUTORING FOR PROGRAMMING TASKS: USING PLAN ANALYSIS-ETC(U)
MAR 82 J R MILLER, T P KEHLER, P R MICHAELIS N00014-80-C-0818

UCLASSIFIED TI-08-82-010 ONR-TR-82-OSISF NL2'flflflllllllllI

IIEEEEIIIIIII
EllEElhhElhlhI
I IhElhElhEEEE
ElllllllhlhhEE
llllllllll~lEEE

ONR-TR-82-0818F

INTELLIGENT TUTORING FOR PROGRAMMING TASKS:
O USING PLAN ANALYSIS TO GENERATE BETTER HINTS

ikl Texas Instruments Incorporated
Central Research Laboratories

y 13500 North Central Expressway
Dallas, Texas 75265

SMarch 1982

Final Report for Period 30 September 1980 - 31 December 1981

Contract No. N00014-80-C-0818

Approved for public release; distribution unlimited.
Reproduction in whole or in part Is permitted for any
purpose of the U. S. Government.

Research Sponsored by D T IC
Personnel and Training Research Programs IELECTE
Psychological Sciences Division
Office of Naval Research APR 30 1982B

>-- Under Contract No. N00014-80-C-0818,
Q- Contract Authority Identification No.

NR 154-458 D
C.-.

i4h.--

UNCLASSIFIED
SECURITy CLASSIFICATION O

ir
TNIS PAGE (wen Dt. Eilero4)

READ INSTRUCTIONSREPORT DOUENTATION PAGE BEFORE rOMPI.ETNG F0W'A
I REPoT NBR 12. GOVT ACCESSION NO- s. RECIPIENT'S CATALOG NuFIn

ONR-TR-82-0818F ,., 1 //0 1
4. TITLE (end Suhiltt) S. TYPE OF REPOfRT ' PEPIgOC C',E-F

"
'

Intelligent Tutoring for Programming Tasks: Final Report
Using Plan Analysis to Generate Better Hints 30 Sept 1980-31 Dec 1981

6. PERFORMING ORG. R1119PO N-iMero
'_" 08-82-010

7 AUT'OR(.) S. CONTRACT OR GRANT NuMllERfsj
J. R. Miller, T. P. Kehler, P. R. Michaelis, and
W. R. Murray N00014-80-C-0818

9 PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM RLMENTPROJEC- 7AS*7
Texas Instruments Incorporated AREA & WORK UNIT N'JMEPS
Central Research Laboratories
13500 N. Central Expressway
Dallas, Texas 75265

I I TROLN It NAME AN9ADDRESS' 12. REPORT DATE
Office b o aval Research March 1982
800 North Quincy Street NI.UMBEROF PAGES
Arlington, VA 22217 103

14 MONITORING AGENCY NAME 4 ADORESS(01 diferen, tl, Controlltng Office) IS. SECURITY CLASS. (of this report,

UNCLASSIFIED
Is&. DECLASSIrICATION DOWNGRA.N.

SCHEDULE

16 DISTRIBUTION STATEMENT (of this Rper)

Approved for public release, distribution unlimited

17 DISTRISUTION STATEMENT (of the abstract entetd in Block 20. if diffesrsn from Report)

IS SUPPLEMENTARY NOTES -

19 KEY WORDS (Continue on reverse aide if ,ocoooay And Identify by block number)

Computer-aided instruction
Artificial intelligence
Tutorial systems
Computer programming
Cognitive psychology

20 ABSTRACT (Continue on reverse aide It neesary and Identify by block number)

.- 2 This project has dealt with tutorial systems for computer programming
languages, particularly, systems in which a student is trying to write a
computer program and can, upon request, receive hints about errors in his
program and ways he can correct these errors. This research had two phases:
an experimental investigation of the interaction between a student and a
hint-giving tutor, and the construction of a tutorial system that identifies
the plan underlying a student's program and gives hints that address
errors in this plan.--

DD I, A.N 1473 EDII O OI NOV 5 IS OSOLETE UNCLASSIFIED
SECURITY CLASSIFICATION OF TWIS PAGE (When leot F r-

"-- [-

UNCLASSIFIED
SLCURITY CLASSIFICATION Of THIS PAGC(Whn Dale U'I..r.

-- 7In the experimental work, an existing programming language tutor (BIP)
was modified to allow students to request and receive hints from a human
tutor. \The protocols generated during the experimental sessions were
analyzed by a taxonomic system that described the events that took place
at a sufficiently general level to allow comparison of sessions across
differer)t subjects or different programing tasks. The actions of tho
studeny, the tutor, and the tutorial system itself were classified.

hese xperiments suggested that:,

Proqrams are typically written in two stages: +Trlayout of the
basic design of the program and (2) correction of the statements that
instantiate this design. C .

Systems that rely on "canned" hints do not provide adequate
assistance for the complex problems faced by students, Although BIP was
able to give reasonable help on the syntactic form of language statements,
it has no facilities for identifying and offering advice on problems with
a program's design; in these experiments, students recognized this short-
coming and relied upon assistance from the human tutors.%,:

The simple syntactic help offered by BIP and similar systems needs
to be augmented by more powerful techniques that can understand the plan
underlying a student's program and offer advice that corresponds to errors
in this plan. Our development of TURTLE, a tutor for the "turtle graphics"
component of the LOGO programing language, is one step toward this goal.
TURTLE uses artificial intelligence techniques to identify and offer help on
student plans, thereby gaining the ability to diagnose the design of a
student's program as well as its code.

TURTLE identifies student plans by working within the limited domain
of turtle graphics and by having access to very detailed representations
of the problems posed to students. As a result, it can generate the entire
set of plausible solutions for a problem. Identifying a student's plan is
then reduced to the much simpler matter of matching the student's
program to a relatively small set of possible solutions and adopting the
the plan that corresponds to the solution offering the best match.
Students are encouraged to decompose a more complex problem into a
set of smaller problems, each of which is solved by a separate function.
By limiting the size of these functions, the combinatorics of solution
generation are kept under control, although at the cost of requiring
TURTLE to determine how a student has decomposed a problem. This
determination is achieved in much the same way as the identification
of a simple program's plan: by comparing the student's decomposition to
a known set of possible and plausible decompositions.

Differences between the student's proposed solution and the correct
solution -- missing or unnecessary statements, or necessary statements
with incorrect arguments -- guide TURTLE's hint-generation component.
Since the student's plan is known, the functions of the incorrect or
missing statements are also known, and hints can be given that reflect
errors in the design and the code of the student's program. The individu-
alized and specific attention required and requested by students is
thereby made possible.

UNCLASSIFIED

SECUMITV CLASSIFICATION OF THIS PAOE(M'.. DaE Eetd)

iii

Table of Contents

1 Introduction 2
2 OGOL: A Graphics-Oriented Language for Tutorial Systems 11

2.1 Task Definition and Language Construction 11
2.2 An OGOL Tutorial System 12
2.3 Evaluation 16

3 BIP/HINT: Experiments with a Tutor with Human-Generated
Hints 18
3.1 The Tutorial System 18
3.2 Experimentation and Protocol Analysis Taxonomy 22
3.3 Taxonomic Analysis of the BIP Sessions 31

3.3.1 Statement Composition and Debugginq 31
3.3.2 Students' Requests for Assistance 32
3.3.3 Problem Difficulty 35
3.3.4 Evaluation of the Taxonomic System 38

3.4 Detailed Analysis of a BIP Session 39
3.4.1 Problems with BASIC 42
3.4.2 Problems with BIP 43
3.4.3 Problems with the Tutor 44
3.4.4 Problems with the "Hint Button" Approach 48

3.5 Advantages of a Human Tutor 51
4 Program Understanding and Synthesis in LOGO: The TURTLE

Tutor 54
4.1 Sample TURTLE Sessions for the TRIANGLE and WELL 55

Tasks.
4.1.1 TRIANGLE: Interpreting Open Coded Solutions 57
4.1.2 WELL: Decomposing a Complex Fiqure 61

4.2 TURTLE: Plan Understanding via Analysis by 65
Synthesis
4.2.1 Curriculum Structure 66
4.2.2 Task Representation 67
4.2.3 Proqram Synthesis 72
4.2.4 Proqram Recoqnition 74
4.2.5 Proqram Decomposition 77
4.2.6 Specifying Setup Orientations and 81

Interfiqure Interfaces
4.2.7 Proqram Annotation and Hint Generation 87

4.3 Areas of Future Develooment 94
5 Summarv 97

References 101

Anpendix I: TURTLE's implementation 103

Accession For

NTIS GRA&I
DTIC TAB E]
Unannounced 0
Justlfietl ,.

Distribution/

Availability Codes
.Avail and/or

Dist Special

11

Foreword

This is the final report for ONR Contract No.

N00014-80-C-0818, "Intelligent Automated Tutors for Instruction

in Planninq and Computer Programming". The contract monitor for

this research was Marshall J. Farr. Mark L. Miller was principal

investigator from October 1980 to September 1981, when he left

Texas Instruments. Direction for the research was then

transferred to Thomas P. Kehler and James R. Miller.

M. Miller was responsible for the contract proposal and the

initial orientation of the research. OGOL (Section 2) was

desiqned by M. Miller and William Murray, and implemented by

Murray. The BIP/HINT system (Section 3) was implemented (via

modifications and extensions to the original BIP code) by Patrick

Duff, Murray, and John L. Shelton. The BIP experiments were run

by Paul R. Michaelis, Murray, Hendler, and Duff. The taxonomic

analysis of the experiments (Section 3) was done by J. Miller,

Michaelis, James Hendler, and Duff. Murray designed and

implemented TURTLE (Section 4). The final report was coordinated

by J. Miller, with contributions from Kehler, Michealis, and

Murray (Section 4).

2

Section 1

Introduction

Recent advances in computer technoloqy have greatly expanded

the power and flexibility of computer-aided instruction (CAI)

systems. While such systems have existed for many years, the

development of artificial intelligence technology has allowed

these systems to become increasingly specialized in their control

of the educational process and their interaction with students.

As a result, these tutors offer a far wider range of diagnostic

and tutorial powers than is available in tutoring systems built

with traditional computer technology. A general discussion of

intelligent computer-aided instruction systems (ICAI) can he

found in Clancey, Bennett, and Cohen (1981) and Sleeman and Brown

(1981); the current discussion will be limited to CAI systems

that tutor students learning computer proqramminq lanquages.

One of the first programminq tutors was BIP (Basic

Instructional Program: Barr, Beard, & Atkinson, 1976). BIP offers

an environment in which a student can create and debug programs

written in the BASIC proqramminq language. A student working

with this system is given a series of problems for which he must

write vroqrams. He enters the statements of these programs

directly into BIP, which checks the syntax of these statements

and advises the student of any errors. BIP also provides a set

of facilities that allow the student to list, run, erase, and

trace the execution of the programs.

For each of the oroblems given to a student, BIP has a set

of input-output pairs that describe certain pieces of data and

the output that should be produced for these data by the

student's program. It also has a BASIC proqram that can generate

this output, qiven the data. The student can run this reference

proqram, enter his own data, and observe the reference program's

treatment of these data. When the student has refined his own

Proqram to the point where he believes it is correct, he can

submit it to BIP for evaluation: BIP runs the studentos program

with the data in its inout-output pairs and compares the output

of the student's proqram to the output that should be produced by

these data. The student is informed of any errors in this output

and can use the facilities of BIP to debug his program until its

output is correct.

BIP has several facilities for offerinq help to a student

durinq the tutoring session. The student can request a qeneral

description of the current problem, which summarizes the general

design of the program and the kinds of statements that are

necessary to solve the problem. The student can also ask for a

"hint," which is usually a more detailed description of a

oarticularly difficult part of this problem. All these

descriotions are determined by the instructor who defines the BIP

curriculum; BIP merely presents these to the student upon

request. Finally, whenever a student enters a statement or a

command that is diagnosed by BIP as being incorrect, he is

offered help on that statement or command. For example, if a

student entered an illegal IF statement as part of his program,

BIP would report that the syntax of this statement was incorrect

and would offer further help. If the student requested this

.. . . . II I I if i~ i rl ' I

4

advice, he would receive a general description of the form of an

IF statement; further requests for help would obtain examples of

other incorrect IF statements and, finally, examples of correct

IF statements.

The level of assistance BIP can provide to a student is

limited. While BIP can offer help on the general form of a

particular statement after an incorrect instance of this

statement is entered, it can offer only indirect advice, via

references to correct and flawed statements of the same type, on

why that statement is incorrect and what must be done to correct

it. Similarly, BIP can offer little help with statements that

are syntactically correct but logically flawed. Although BIP is

more than a frame-based tutor, its assistance must be predefined

by the course's authors and written in a general form to address

general problems that will presumably be of use to as many

students as possible. To go beyond these limitations, tutorial

systems must incorporate detailed knowledge about the actions the

program is intended to carry out, the nature of the programming

statements used to build these proqrams, and high-level knowledge

structures that describe the design of a complex program; i.e.,

the decomposition of a large problem into an organized collection

of smaller, manageable problems. As will be discussed later,

artificial intelligence techniques offer an appropriate set of

tools for this task.

Another feature of BIP that might be improved by artificial

intelligent techniques is the selection of the problems that are

presented to students. BIP teaches BASIC by requiring the

5

student to write programs that accomplish increasingly difficult

tasks. The complete system contains 91 tasks, although only

about 20 of these are ever presented to a sinqle student. The

selection of these tasks depends upon BIP's curriculum

information network: BIP contains, for each of the problems in

the network, a description of (a) the skills (statement types,

such as variable assignment, conditional, input/output, etc.) a

student must have to solve this problem, (b) the skills the

problem is intended to teach, and (c) the skills that are

considered irrelevant to the problem. BIP also builds and

maintains a model of the student by noting the skills the student

has mastered as a result of completing the programming tasks

presented to him by BIP. When a student has successfully

completed a task (and thus presumably mastered the newly

introduced skills in that task), BIP adds the skills that were

taught by this task to its model of the student, compares this

model to its curriculum network, and presents the student with a

task that presupposes a set of skills that is already possessed

by the student and that introduces or develops a skill that has

not been mastered by the student.

In this way, BIP can tailor its instruction to the progress

of individual students, presenting tasks that gradually advance

the student toward a complete understanding of BASIC. Note,

however, that BIP's lack of knowledge structures that describe

the design-level components of a program (which prevents BIP from

offering students assistance at this level) also limits its

ability to build a detailed and accurate student model: students

learning to proqram are learning software design as well as a

6

Particular programminq language, and a sound tutorial system

should represent both of these aspects of the students'

experience.

These issues have been considered in more recent tutorial

systems that have taken advantaqe of insights from artificial

intelligence research. To Provide personalized advice about the

desiqn of a student's program and about the actions carried out

by individual statements, it is necessary to examine the content

of the student's partially correct program, to infer the plan

underlyinq this program, and to offer assistance to the student

that addresses the differences between this inferred plan and a

Plan that describes a correct solution to the problem.

One system concerned with inferring student plans to this

end was Goldstein's MYCROFT (1975), a system designed to diagnose

fiqures drawn by "turtle graphics" programs written in Logo. A

student working with MYCROFT describes the figure he was trying

to draw in a "model lanquaqe"; a stick figure of a man might be

described as:

MODEL MAN
Ml PARTS HEAD BODY ARMS LEGS
M2 EQUTRI HEAD
M3 LINE BODY
M4 V ARMS, V LEGS
M5 CONNECTED BEAD BODY, CONNECTED BODY ARMS,

CONNECTED BODY LEGS
M6 BELOW LEGS ARMS, BELOW ARMS HEAD
END

This description states that a MAN has a HEAD, BODY, ARMS,

and LEGS as its PARTS (Ml). The types of these figures are then

identified (e.g, the HEAD is an EQUTRI -- an equilateral triangle

(M21), as are the connections between these parts (M5) and the

relative positions of the parts (M6). Some of these property

types were defined as system primitives (e.g., PARTS, LINE,

CONNECTED, BELOW) while other properties could be defined by the

student: here, the student must define EQUTRI and V, in ways

similar to the definition of MAN.

MYCROFT could use this figure description to diagnose errors

in the studentos program in terms of high-level principles

underlyinq the design of the program, such as the failure to

reorient the "turtle" drawing device after drawing a portion of

the figure, or that an error existed in the statements that drew

the LEGS of the MAN. The rules that MYCROFT used to detect

proqramminq errors were ad hoc, but captured many of the common

flaws in program construction. In addition, MYCROFT was not fully

implemented.

Similar concerns for assisting students with the design of

their proqrams lay behind the development of SPADE (Miller, 1979;

Miller & Goldstein, 1977). SPADE guided a student through the

construction of a Logo program by providing a high-level

description of the design of the program that was progressively

refined by the student. SPADE used grammar-like structures to

represent possible design choices:

PLAN -> IDENTIFY ! DECOMPOSE I REFORMULATE
IDENTIFY -> PRIMITIVE I DEFINED
DECOMPOSE -> CONJUNCTION I REPETITION

PRIMITIVE -> VECTOR I ROTATION I PENSTATE
VECTOR -> {FORWARD I BACK} + <number>

A student using SPADE (and the design grammar shown here) is

presented with the decomposition of PLAN, indicating that a

8

program can be written by identifying primitive or previously

defined procedures that would accomplish the task, by decomposing

the problem into a set of simpler tasks, or by reformulating a

problem into a different problem for which a known plan exists.

After specifying the desired decomposition, The student continues

by selecting one of these decompositions for further work,

perhaps DECOMPOSE: by this, the student indicates that the

program required a decomposition (although he can later return to

the PLAN level and work on the IDENTIFY or REFORMULATE steps,

should these be relevant). The student is then shown the

decomposition of the DECOMPOSE step and further decides whether

the required decomposition is one of CONJUNCTION or REPETITION.

As this process continues, the student ultimately reaches the

terminal points of the grammar, which specified explicit

programming language statements. The result of this attention to

the design component of proqramminq is meant to convey basic

concepts of software design rather than the syntax of the

Droqramminq language.

A somewhat different approach to these issues was taken by

Gentner's FLOW tutor (Gentner, 19777 Gentner & Norman, 1977).

This system contained schematic structures that described a wide

variety of states that might be present during the construction

of a program, from individual keystrokes to complex design-level

structures. The system began its control of a tutoring session by

locating the schema that matched the problem posed to a student

and expandinq this schema into instances of lower-level schemata,

predicting individual statements and even keystrokes. The

correctness of a student's proqress toward a solution of the

problem could then be tracked by noting which schemata were

activated by the student's program. If the student proceeded

toward a correct solution of the problem, the schemata activated

by the student's program would match those activated by the

tutor's decomposition of the problem description. Alternative

correct solutions to a problem would be correctly interpreted by

the system, since a correct solution would satisfy the

constraints of high level schemata, even though the inC'vidual

program statements would have activated an unexpected set of

roqram statement schemata. If the student's program departed

significantly from a correct solution, the resulting errors would

activate other schemata that were designed to recognize these

errors, which would then trigger appropriate corrective actions.

It is important to note that these error-detecting schemata could

be constructed so as to describe and detect errors at any level

of complexity, from an assignment statement with unbalanced

parentheses to the incorrect initialization of a counter variable

in a complex iterative loon.

The present research has focused on one of these problems --

how to give students specific, individualized assistance during

the construction of computer programs. We proposed to construct

a tutor that would teach students how to write proqrams that

oroduc "turtle qraphics" line drawings, and that would offer the

stud'ents hints about errors in their program. The proposed tutor

wa3 intended to address not only syntactic errors in program

statements, but also errors in the conceptual design of the

program. This research was intended to focus on one aspect of

the hint-giving problem: the construction and presentation of

10

relevant hints. We have postponed until a later time the second

aspect of this problem -- determining when the tutor should

interrupt the student's work to offer a hint -- by requiring the

student to explicitly request hints from the tutorial system.

This research is presented in four sections. First, a

programminq lanquage for studying tutorial interactions and a

simple tutor for this language are described. Second, a series

of experiments on a computer-based tutor with human-qenerated

hints is presented. Third, the tutorinq system that was

implemented is descrihed and demonstrated. Fourth, the research

is summarized and evaluated, and directions for future research

are considered.

Section 2

OGOL: A Graphics-Oriented Language for Tutorial Systems

2.1 Task Definition and Language Construction

The first step in this project was to identify a programminq

language that would he particularly appropriate for the

development of a tutorial system. The primary candidates for

this language were Logo and Lisp. Loqo-based "turtle graphics"

programs are easy to explain to students, can be made arbitrarily

complex, and result in a drawing in which the correct and

incorrect Darts of a program are quite apparent. In addition,

these drawings can be represented by networks of points and

vectors, a convenient data format for those Darts of the tutorial

system that must analyze and evaluate student programs. However,

the limited Power and generality of Logo's iterative and

conditional branching statements would make the construction of

programs that require these statements inordinately difficult and

would limit the extension of a Loqo-based tutorial system to

other languages in which more powerful control statements are

available. In contrast, Lisp offers a straightforward solution

to the extensibility problem; however, it lacks the graphics

statements that made Logo so anpealinq and would impose upon the

student a set of function names and nrogramminq structures that

are often difficult and confusing for those who are new to

programminq or who are experienced with Fortran- or Pascal-like

languages.

This dilemma was resolved by developing a new language --

12

OGOL (ONR Graphics Oriented Language) -- that merges the

desirable features of Logo and Lisp. In particular, OGOL allows

the construction of turtle graphics programs in an environment

with all the extensibility and recursive power of Lisp and with

several features that correct some of the more complex and

difficult to learn aspects of Lisp: OGOL offers flexible list

construction facilities, pattern directed evaluation, and both

call-by-name and call-by-value evaluation.

2.2 An OGOL Tutorial System

To evaluate the usefulness of this language, a simple

"turtle qraphics" tutor was built around OGOL. The Lisp-like

features of OGOL were not studied in this system. Rather, the

OGOL tutor trains the student in the use of the basic turtle

qranhics commands. This tutor uses two terminals: a standard

terminal with which the student carries on the tutorial

interaction with the system, and a color qraphics terminal that

displays the qraphics commands and proqrams run by the student or

the tutorial system. The graphics commands available in OGOL

are:

-ERASE: erase the screen and place the turtle in the
center of the screen.

-DRAW X: draw a line X steos lonq.

-MOVE X: move the turtle forward X steps (without
drawinq a line).

-TURN X: turn the turtle X degrees clockwise.

This tutor is in many ways similar to BIP. Like BIP, the

OGOL tutor uses a "curriculum information network" to expose a

student to the course material in an ordered way. The OGOL tutor

13

also has a facility for offering predetermined
hints about the

tasks being presented to the student. The instructor who

assembles a particular version of the OGOL tutor can specify a

set of hints for each proqram in the curriculum. These hints can

refer to either the general design of the program being written

or to the code used in specific statements within the program.

Upon request, these hints will be shown one after another in the

order specified. The presentation of these hints is partially

affected by the student's progress in the task: if the student

asks for hints before he has tried to enter a program that would

solve the current problem, he will receive the design-level hints

provided by the instructor. However, he cannot receive code

hints until he has made at least one attempt to define the

program.

A partial transcript of a student's interaction with the

OGOL tutor is shown in Table 1. The session begins by presentinq

some introductory information about computer proqramming in

qeneral and turtle graphics proqramminq in particular, and by

allowing the student to experiment with the basic OGOL graphics

commands -- the student can issue graphics statements and observe

their result on the graphics terminal. In the transcript in Table

1, the student has completed this phase of the session and is

receivinq instruction on how to generate a sequence of OGOL

statements that will draw a square.

The student is first told that he can draw a square by

vuttinq the individual commands he previously used to draw a

square into a proqram definition statement (line 1). The tutor

14

Table 1:

A sample tutorial session with the OGOL tutor.
Those lines entered by the student (such as line 15)

are headed by "**".

1 Let's write a program to draw a square. You
2 already know how to do this by typinq in a sequence of
3 commands. Write a program named SQUARE that will perform
4 that sequence of commands when it is called. Make sure
5 that the heading of the turtle before and after calling
6 the SOUARE proqram is the same. This may require
7 another TURN command at the end of the sequence of
8 commands to draw the square. This final turn command
9 will make sure that the sum of all the rotations in the

10 SOUARE proqram is 360.
11
12 Welcome to OGOLI
13 Type (HELP) for help.
14
15 **(hint)
16
17 If I wanted to define a proqram called FOO to have my
18 turtle draw forward 100 units, turn 135 degrees, then
19 draw 50 units, I would type the following:
20
21 (define [fool
22 (draw 100)
23 (turn 135)
24 (draw 50))
25
26 Note that I can place the various parts of the program on
27 different lines. When all the parentheses balance (that
28 is when the number of left parentheses: (matches the
29 number of right parentheses:) I and I have entered a
30 return after the last line, then the proqram is defined.
31
32 To call FOO, I need only type:
33 (FOO).
34
35 **(hint)
36
37 Sorry, no more hints are available for designinq a
38 solution to this task. However, I can give you more
39 hints once you DEFINE a proqram.
40
41 **(define [square]
42 (draw 100) (draw 100) (draw 1.00) (draw 100))
43 SQUARE
44
45 **(hint)
46

15

47 Your proqram should call the same sequence of commands
48 you called before when you drew 4 line segments at right
49 angles to each other. If you make an error, you canso always redefine your program and the new definition will
51 override the old definition. If your sequence of
52 commands turns the turtle 270 degrees, then adding (TURN
53 90) at the end of that sequence will restore the
54 original heading of the turtle.
55
56 **(define (square] (draw 100) (turn 90)
57 (draw 100) (turn 90)
58 (draw 00) (turn 90)
59 (draw 100) (turn 90))

60 SQUARE

62 **(square)
63
64 [OGOL draws a square on the graphics terminal]]65
66 **(quit)
67
68 Here is one way to solve the task you have just
69 completed:
70
71 (define (square]
72 (draw 100)
73 (turn 90)
74 (draw 100)
75 (turn 90)
76 (draw 100)
77 (turn 90)
78 (draw 100)
79 (turn 90))
80
81 Note the last (Turn 90) is used to return the turtle to
82 its original heading.
83
84 See if you can draw a triangle now, in a similar
85 fashion to the way you drew the square, using only DRAW
86 and TURN commands. The triangle should be equilateral
87 and have sides of length 100. It's OK if the triangle
88 is tilted.

(session continues]

16

then places the student in the OGOL interpreter (line 12), where

he is to define the SQUARE function.

The student begins this phase of the session by requesting a

hint from the tutor (line 15), which provides a hint about the

design of the DEFINE statement: he is shown how to define a

function that draws an arbitrary line segment (line 21). The

student requests another hint (line 35), but since the student

has not vet tried to define the SQUARE function, and since only

one design hint was included in the system by the instructor, he

is told that no more hints will be available until he has tried

to define the function (line 37).

At this point, the student (incorrectly) defines SQUARE

(line 41). His subsequent request for a hint is answered (line

47) with a reference to the series of commands he had entered

earlier. He then (correctly) redefines SQUARE, (line 56) and runs

the function (line 62), which draws an acceptable square on the

qranhics terminal. Having completed the function, he leaves the

OGOL tutor (line 66) and returns to the tutor, which shows him a

valid function for SQUARE (line 71). The session then continues,

with the student now requested to define a function to draw a

trianqle (line 94).

2.3 Evaluation

As stated earlier, the OGOL tutor is quite primitive. All

hints are orespecified by a human instructor, and its curriculum

network was never developed to the extent of the corresponding

network in BIP. Further, this system was never extended toward

hecoming a truly intelligent tutorial system, nor even toward

I "F
17

acquiring the full capabilities of a BIP-like system. As a

result of some preliminary experiments with OGOL, it became clear

that the basic turtle graphics domain itself -- without OGOL~s

expanded facilities for subroutine parameter passing and flow of

control -- was sufficiently complex for the purposes of the

contract. Hence, the development of the OGOL tutor was suspended

in favor of developing a turtle graphics system capable of

identifying the student's plan and generating intelliqent hints

about that plan.

18

Section 3

BIP/HINT: Experiments with a Tutor with Human-Generated Hints

3.1 The Tutorial System

An important part of this study of intelligent tutorial

systems has been to study how human tutors interact with their

students. Good tutors can build sound models of their students'

knowledge and problem solving strategies and can interact with

the student in ways that address and correct the difficulties he

faced. Identifvinq the strategies that good human tutors use to

these ends is the first step in the construction of tutorial

systems with similar capabilities.

To this end -- understandinq the relative strengths and

weaknesses of human and computer tutors -- experiments were

carried out with a modified version of BIP (Barr, et al., 1975).

These modifications allowed a student in a tutorinq session to

request a hint from a human tutor. In this modified version of

RIP (here called RIP/HINT) the student and the tutor were located

in separate rooms, each equipped with two terminals (see Figure

1). The student used one of the terminals to interact with

RIP/HINT; both sides of this interaction also appeared on one of

the tutor's terminals. At any time durinq the session the

student could request a hint from the human tutor by pressinq the

touch nanel mounted on his second terminal. The tutor entered

this hint on his second terminal, which then appeared on the

student's second terminal. This procedure was intended to

simulate a tutorial system with a "hint button": in these

19

experiments, the student had to request a hint (the tutor could

not interrupt the student's session and offer a hint), and the

student could communicate with the tutor only by pressing the

touch panel (the student could not send a question to the tutor).

Some other modifications were made to make BIP more suitable

for the current purposes:

* Session recordings. A studentos interactions with BIP/HINT

and with his tutor were saved in disk files for later analysis.

* Restricted set of tasks. Only seven of BIP's original

tasks were used in these experiments:

-GREENFLAG: an introduction to the use of BIP and the
format of BASIC statements, and the quided construction
and execution of a BASIC proqram that assiqns an
integer value to a variable and then prints the value
of that integer.

-ARTICHOKE: assign the string "ARTICHOKE" to a string
variable, assiqn the value of that variable to a second
variable, and print the second variable.

-SINOP: qet two strinqs from the student with two
separate INPUT statements and print them on the same
line.

-NINOP: qet two numbers from the student and print their
sum, difference, product, and quotient.

-TWOS: use a FOR loop to generate and print the even
numbers from 2 to some number specified by the student.

-NGREAT: qet two numbers from the student and print them
in the proper order in the form, "<number> is greater
than <number>".

-CALCULATOR: qet an arithmetic operation from the
student (la"add," 2="subtract," etc.) and apply this
operation to two numbers that are then entered by the
student.

Some minor changes were made in these tasks to simplify the

wordinqs of the problems and to remove a few ambiguities.

S T U 13 E N T

TERMIlRL 1 TERIIIAL

normal hint

BIP reL

session di spi-

B I F/ H I N T

student's hu a
BIP ant

session d isp

TERMINRL 1 TERMINAL 2

TUTOR

Figure 1 A Schematic Depcrii)Lior of thP Experimental ir[i ;

System

21

* Restricted set of BIP commands and BASIC statements.

Students workinq with RIP can be shown the names of the leqal BIP

commands and BASIC statements by using the commands "?BIP" and

"?BASIC", respectively. Both commands produce large amounts of

information, and some students complained about being unable to

find a command or statement in these lists. Because of this and

the restricted set of tasks used in BIP/HINT, some of the

commands and statements were removed from BIP/HINT's response to

the "?" queries, although the parts of RIP responsible for

interpretinq the disabled commands and statements remained

intact, so that these statements would be interpreted properly if

they were entered. The commands and statements available in

RIP/HINT were then as follows:

Available BIP commands: CALC, DEMO, LIST, MORE, RUN, SCR,

WHAT, WHO, WHY

Hidden RIP commands: DEMO-TRACE, FLOW, HINT, KILL, MORE,

BYE

Available BASIC statements: DATA, END, FOR, GOTO, IF,

INPUT, LET, NEXT, PRINT, READ, REM, STOP.

Hidden BASIC statements: BEGINSUB, DIM, ENDSUB, GOSUB,

REOPEN, RETURN

* Revised student manual. The RIP student manual was revised

to make it easier to locate desired narts of the manual and to

remove those parts of the manual that referred to RIP commands

that were not available in RIP/HINT. This revised manual

included selected sections of the oriqinal RIP manual and new

22

one-page summaries of the most common BIP commands and BASIC

statements. These summaries contained brief descriptions of the

command or statement and the page number of the manual where a

more detailed description could be found. This revised manual

covered all the leqal BASIC statements, but was only 37 pages

lonq (versus the 61 pages of the oriqinal manual).

3.2 Experimentation and Protocol Analysis Taxonomy

The experimental sessions were conducted to study the

conditions under which students requested assistance from the

human tutor or from the tutoring system, the nature of these

hints and the tutoring experience in general, and the ability of

the student to apply these hints toward the construction of a

correct proqram. There are important differences between BASIC

and LOGO, but our analyses of these protocols are not concerned

with the lanquaqe-dependent aspects of the tutorinq sessions.

Rather, they are focused on the coqnitive aspects of tutorinq,

esoecially those related to the circumstances surroundinq hint

requests and hint qeneration. It should also be noted that these

experiments should not be regarded as an evaluation of BIP. The

version of BIP used in these experiments was severely limited in

comparison to the actual system -- in particular, BIP s own hint

facility was hidden from the students. The intent was only to

observe the nature of the interaction between a student and a

tutor.

Eight subjects, none of whom had any prior experience with

computer oroqramminq, took part in a series of sessions with

RIP/HINT. Due to problems with the computer system (e.g.,

23

RIP/HINT crashes durinq a tutorial session), we have usable

protocols from three of these subjects. All subjects

successfully completed the first five tasks: GREENFLAG,

ARTICHOKE, SINOP, NINOP, and TWOS.

Because the protocols are very lonq, it was necessary to

condense them into a form more amenable to analysis. A taxonomy

was therefore devised to describe the interactions by the

student, the tutor, and BIP/HINT in these protocols (Table 2).

The taxonomy contains three major classifications,

corresnondinq to whether the protocol segment beinq encoded was

produced by the student, by the human tutor, or by the tutorial

system. A student may do a variety of thinqs to orogram

statements: he mav try to enter a line in the reference program

for the first time, reenter that statement until a syntactically

leqal BASIC statement has been entered, change that leqal

statement further, or delete the a statement altogether. He may

also enter various RIP commands or request help from either ,the

tutor (by pressing the touch panel) or the tutorial system (in

response to an offer of help, as described below). The student

mav also respond to one of a number of questions from BIP.

1
Our tutors' statements fell into two categories: offers of

future help and hints of various kinds. We identified four major

classes of hints:

-code: hints that included examples of executable RASIC
statements.

i
Several people served as tuitors in these experiments.

J-

24

Table 2:

Taxonomy for the analysis of BIP protocols

student
enters

command <name <arqs>>
data
statement:

line <BIP-line#>
reenters

statement:
line <RIP-line#>

chanqes
statement:

line <BIP-line#>
deletes

statement:
line <BIP-line#>

evaluates
program:

ok: {incorrecti
wrong: lincorrecti

answers BIP query <with response>
asks for

system {nol help

tutor
hint

tutor
qives hint:

code:
{ok I error I continuel,
line <BIP-line#>

design: {ok I error I continue),

line <BIP-line#>
operation:

{ok I error I continuelgeneral:
fok I error continue)

offers
future help

25

system
accepts

command <name>
modification: line <BIP-line#>
statement: line <BIP-line#>

asks for operation instructions
describes execution:

fails: line <RIP-line>, error <BIP-error>
innut error
runs

ok
wrong

qives hint
code:

line <RIP-line#>,
continue
error
ok

design:
line <RIP-line#>,

continue
error
ok

operation:
continue
error
ok

general:
continue
error
ok

offers
help:

line <BIP-line#>
operation

no help
problem description

rejects
command: <name <arqs>>

has a line number
issued at wrong time
incomplete command
other error

statement: line <RIP-line#>,
has no line number
incomolete-statement
other error
syntax error: <BIP-error>

terminates task

26

-design: general hints about the design of the proqram,
or hints that suggested the use of particular BASIC
statements, but that did not show an executable
statement. Hence, the hint, "Use a PRINT statement to
output the value of X" would be scored as a design
hint, while "Use the statement 'PRINT V to output the
value of X" would be scored as a code hint.

-operation: hints about the operation of BIP (e.g., "Use

the LIST command to look at your program.").

-general: hints that referred to general aspects of
computer proqramming (e.g., "The computer can only do
exactly what you tell it to do.")

In addition, the scoring of the hint noted the line of the

reference proqram with which the hint was concerned, and whether,

through this hint, the tutor was tellinq the student that an

error had been made, that the relevant part of the program was

correct (ok), or that the student should simply continue working.

The narts of the protocol generated by the tutorial system

were scored in similar ways. The systemos acceptance or

rejection of the RASIC statements and BIP commands entered by a

student were scored appropriately. BIP could also offer help

after a statement or command error, ask the student for certain

operation instructions, and describe the execution of the

student's proqram. These diagnostic messages and prohlem

descriptions typically contained suggestions about how the

proqram should be constructed, and so were scored the same way as

were tutor hints.

This taxonomic system converts the near-natural lanquage of

the tutorial session into a more limited form, which offers

several advantages now and others that might be explored in the

future. The use of this taxonomy has allowed us to automate much

27

of the descriptive analysis of these protocols, and it serves as

a common language through which we can compare the performance of

all the subjects on a common task, or evaluate the progress of

individual subjects on successive tasks. A sample protocol and

its taxonomic analysis are shown in Table 3. Statements from BIP

are in upper case, responses from the student are in lower case;

the taxonomic analyses of the statements follow exclamation

points, and the tutor's hints are underlined.

The session shown in this protocol began with an offer by

BIP to print a description of the current task (lines 1-2); this

was coded as "system offers problem description" (line 3). By

respondinq "yes" (line 5), the "student answers [a] BIP query.*

This description of the problem contained several hints of

different kinds. First, the student was shown two explicit

examples of how variables can be assigned the values of strinq

constants or other string variables (lines 9 and 15). Since

these "system hints" contained instances of executable BASIC

code, they were further classified as code hints about specific
2

lines of BIP's reference proqram for this problem. The student

also received other, more abstract hints about the design of this

particular proqram; these (lines 19, 23, and 26) were textual

Mescriptions of what each line of this program should do, and

2
The HIP tasks we have studied have been simple enough that our

students' proqrams rarely differed in any substantial ways from
these reference programs. As a result, we were able to use BIP's
reference proqram as a standard against which the students'
programs were scored: the program statements entered by students
were encoded in terms of the correspondinq statement in BIP's
reference proqram. This use of a standard reference program
would probably not be satisfactory with more complex programs.

28

Table 3:

A sample application of the taxonomy to a RIP protocol.
RIP's exchanges are in upper case, the student's responses
are in lower case, the tutor's hints are underlined, and
the taxonomic statements are to the right of an exclamation

point.

1 YOU ARE IN TASK ARTICHOKE.
2 DO YOU WANT THE TEXT PRINTED OUT? TYPE Y OR N.
3 1 (system offers problem
4 1 description)
5 >v
6 1 (student answers BIP query: y)
7
8 YOU CAN ASSIGN A LITERAL VALUE TO A VARIABLE LIKE THIS:
9 10 TS - "TELEPHONE"

10 1 (system gives hint:
II code: line 10)
12
13 YOU CAN ALSO ASSIGN THE VALUE OF A VARIABLE TO ANOTHER
14 VARIABLE, LIKE THIS:
15 10 S$ = T$
16 1 (system gives hint:
17 ! code: line 20)
18
i9 WRITE A PROGRAM THAT FIRST ASSIGNS THE VALUE "ARTICHOKE"
20 TO THE STRING VARIABLE AS.
71 ! (system gives hint:
22 ! design: line 10)
23 THEN HAVE IT ASSIGN THE VALUE OF AS TO ANOTHER VARIABLE BS
24 ! (system gives hint:
25 ! design: line 20)
26 AND THEN PRINT THE VALUE OF B$.
27 1 (system gives hint:
28 ! design: line 30)
29
30 *10 "artichoke" a$="artichoke
31 ! (student enters statement:
32 1 line I0)
33 ^
34 SYNTAX ERROR: UNMATCHED QUOTE MARKS
35 1 (system rejects statement:
36 ! line 10:
37 ! syntax_error)
38 LINE NOT ACCEPTED. (TYPE ? FOR HELP)
39 1 (system offers help)
40
41 *10 artichoke I (student re-enters statement:
42 1 line 10)
43
44 1 (student requests hint)
45
46 From TU7TOR: you're doing it backwardsl
47 1 (tutor gives hint:

29

48 1 design, line 10)
49 Trv typing the line in this format:
50
51 10 TS - "TELEPHONE"
37- 1 (tutor gives hint:
53 1 code, line 10)
54
55 10 a$ ="artichoke
9;6 1 (student re-enters statement:
57 1 line 10)
58
59 SYNTAX ERROR: UNMATCHED QUOTE MARKS
60 1 (system rejects statement:
61 1 line 10,
62 1 syntax error)
63 LINE NOT ACCEPTED. (TYPE ? FOR HELP)
64 1 (system offers help)
65 *what
66 ! (student enters command)
67
68 YOU ARE IN TASK ARTICHOKE.
69 DO YOU WANT THE TEXT PRINTED OUT? TYPE Y OR N.
70 1 (system offers problem
71 1 description)
72 >v
73 1 (student requests system help)

[protocol continues]

30

were scored as desiqn hints.

In response to these hints, the student tried to enter the

first line of the proqram (line 30), which was scored (line 31)

as the entry of line 10 of BIP's reference program. The syntax

error in this line was scored in HIP's response to the student's

input (line 34). BIP then offered help (line 38), which the

student did not request. Instead, she made another attempt at

the statement (line 41), which was aqain flawed by a syntax

error. Before actually entering this line into BIP, however, she

requested a hint from the tutor (line 44) by pressing the touch

panel.

In this interaction with the student, the tutor provided two

hints of differinq specificity: a design hint about the

assignment statement (line 46) and a code hint about the correct

form of the assignment statement (line 51). The student then

tried to enter the correct line (line 55), but made another

syntax error. The student again rejected BIP's offer of help

(line 63), and entered the command that will print the

description of the task (WHAT: line 65). As the protocol ended,

she asked to see the task description again (line 72), in which

she received the design and code hints that she received in the

first presentation of the problem description (lines 8-28), and

continued to work on the problem.

This analysis provided the ability to describe a tutorial

session at an abstract, but still informative, level. The

student's Problems were centered around the assignment statement

in line 10, having entered attempts at the statement three times

31
and having received code and design hints about the statement

from two different sources. More importantly, the abstract form

of this analysis allowed us to evaluate the performance of

multiple subjects on these problems, and it is to these kinds of

analyses we should now turn.

3.3 Taxonomic Analysis of the BIP Sessions

Even with the limited amount of data we considered, the

taxonomic analysis of these protocols revealed several

interestinq trends. Perhaps the most informative analyses were
3

those in which the tutorial sessions were divided in half, and

separate analyses were carried out on each half. In this way, we

could observe chanqes in the performance of the student, the

system, or the tutor as the student qradually approached a

correct solution.

3.3.1 Statement Composition and Debugging

With the analysis of these protocols it was possible to

address the way students construct a program. Recall that our

classifications of statement entry and reentry correspond to the

initial attempts to enter a syntactically legal statement; any

modifications to a legal statement are then scored as changes.

The mean frequencies of these classes of events for our subjects

in the first and second halves of the protocols are shown in

Table 4. These data suggest two major processes in our subjects'

solution of these problems: statement composition -- in which a

rough approximation to the program is constructed -- and

3
on the basis of the number of lines of text in the protocol

32

statement debugging -- in which the nearly correct components of

the proposed solution are corrected and refined.

These processes take place neither strictly sequentially nor

strictly simultaneously. Statement composition appears to take

nlace primarily in the first part of the solution; our students

made somewhat more enters and reenters in the first half of the

protocol. In contrast, statement debugging was concentrated in

the second half of the solution: more than twice as many

statements were changed in the second half than in the first.

Subjects seem to have first made a general pass over the problem,

qenerating a statement (that is not necessarily correct) for each

part of the problem, and then gradually refining these statements

into their correct forms. This is similar to Atwood and

Jeffries's (1980) finding that people approach complex software

design tasks by first building, in a breadth-first manner, an

approximation to a complete solution, and then refining in a

depth-first way those components of the solution that are in

error.

3.3.2 Students' Requests for Assistance

Students in these sessions could get assistance from either

the human tutor (by pressing the touch panel and requesting a

hint) or by asking HIP for help (the diagnosis of an incorrect

statement could, if the student wished, be followed by

descriptions of the correct and incorrect forms of those

statements). Table 5 shows the mean frequencies of subjects'

requests for assistance from either the human tutor or BIP itself

during the first and second halves of the tutorial session.

33

Table 4:

Mean frequencies of statement entries and reentries
vs statement changes in the first and second halves

of protocols.

entries
and chanqes

reentries

first half 4.8 3.0

second half 2.4 6.2

34

Table 5:

Mean requests for assistance from the human tutor and

the tutorial system in the first and second
halves of protocols.

tutor system

first half 1.5 0.8

second half 2.1 0.5

35

These data show that subjects stronqly preferred assistance

from the human tutor, particularlv in the second half of the

session, where, as found in the first analysis, subjects were

debuqginq their initial rough approximation to their program.

Together, these analyses indicate that our subjects were willing

to accent BIP's help when they were layinq out the initial plan

for the oroqram, but that they qenerally relied on the human

tutor for assistance when debugging their programs. These

preferences corresnond to the different kinds of heln that are

available from these two sources: BIP's system help is good for

qeneral comments about the structure of program statements and

the basic desiqn that the proqram should take, while the human

tutor is most valuable when the student has entered a statement

that is an incorrect, but syntactically leqal, piece of BASIC

code. The human tutor can identify the student's oroblem and

quide the student toward a correct solution.

These data illustrate a further point about our students'

use of the system and tutor help facilities -- they were

extremely hesitant to take advantage of them. Requests for

system help were very rare (especially so when it is remembered

that RIP offers this help after every input error made by the

student); requests for tutor hints were more common, but still

infrequent. The implications of this findinq on the desiqn of

intelligent tutors will be discussed later.

3.3.3 Problem Difficulty

Differences in the nature and level of help available from

the tutors and from BIP can also be seen in Table 6, which shows

36

the number of times that students requested help from either the

tutor or from BIP in each of the four tasks. These data indicate

that students preferred help from the tutor at two particular

times: when they were just beqinning to use the system, and when

they were workinq on the hardest of the four problems.

Subjects need especially flexible and individualized

assistance at both of these times. When workinq on the first

problem, subjects needed help on their use of the BIP system

itself, particularly which commands should be used at which

times. Although BIP contains thorough descriptions of its

commands that could be offered when a student incorrectly used

the command, it is unable to infer from a student's performance

which of these commands might he appropriate at a qiven time;

therefore, its help facilities are of little use at this point.

Further, since heln is available in this system only after an

error has been made, a student may have no choice but to ask the

tutor for help in what might be done next.

The final and most difficult problem studied (TWOS) requires

the use of the BASIC iteration statement (FOR). To solve this

problem correctly, the student must understand the use of

iteration in the design of the proqram: the ability to write the

statement underqoinq the iteration is assumed, and the skill

bein learned is how to embed one conceptual part of a proqram

37

Table
6:

Mean requests for assistance from the human tutor and
the tutorial system for the four completed Droblems.

tutor system

ARTICHOKE 2.0 0.0

SINOP 2.7 2.3

NINOP 2.0 2.3

TWOS 8.7 .7

(Note: these data are ranked by the difficulty of the

problems; ARTICHOKE was the easiest of the four; TWOS was the

;rdest.]

38
4

within another. We suspect that our students used BIP's help

facilities on the simple problems because the level of help that

RIP can offer durinq these problems matches the level that is

needed -- advice on the format of simple inout/outnut and

assignment statements. However, to effectively advise a student

on a program containinq iteration, the tutor must understand the

proper relation between the iteration statement and the iterated

statement, as well as the student's (possibly flawed)

understanding of this relation. This detailed understanding of a

conceivably larqe set of proqram statements is beyond the scope

of a system like BIP.

3.3.4 Evaluation of the Taxonomic System

As an experiment to determine whether such a taxonomic

system might be useful in the study of tutorinq protocols, the

oresent analyses were quite promising. However, further research

involvinq more subjects and tasks is needed to refine this

technique. One direction in which future research should qo is

toward the qeneration of the protocol analysis by the tutorial

system itself: when a student entered a statement, the system

could easily enter the taxonomic statement "student enters

statement" into its recordinq of the tutorial session; the

4

A stronq causal statement regardinq why students stop
reauestinq hints on hard problems cannot be made from these data,
since the difficulty of the problems received by a student is
confounded with number of problems that a student has solved.
While we believe that the "canned" hints like those offered by
BIP are initially useful, but become less useful as the problems
become more complex, it may also be that canned hints are never
really useful to the students, but that the students must work
with BIP for some time before they realize this.

LI

39

system's acceptance or rejection and diagnosis of that statement

could similarly be noted. However, some decisions cannot be made

as easily as these simple notations of syntax errors: if a

student entered a poorly constructed IF statement during the

composition of a program that contained two IF statements, it

would probablv difficult to determine which of the two the

student was trying to write. At this point the taxonomic

analysis of protocols would begin to change from a simple

transcription of the "surface structure" of a program into a more

conceptual analysis of the student's plan that underlies the

qenerated program -- exactly the kind of analysis that is needed

in an "intelligent" tutor. It is unclear at this time whether a

taxonomic system like that used here might also serve as an

abstract descriptive language that could be exploited by the plan

identification component of an intelligent tutoring system (cf.

Miller & Goldstein, 1977), but this possibility may be worth

exploring.

3.4 Detailed Analysis of a BIP Session

Although much can be learned from the taxonomic analyses

described above, a more detailed understanding of the tutorial

interaction still requires analysis of the original protocols.

One of our subjects -- referred to as DD -- found the programming

tasks particularly difficult, and was the focus of such an

analysis. Her protocol offers offers a particularly rich source

of data on the interaction between a tutor and a student.

DD correctly completed the GREENFLAG, ARTICHOKE, SINOP, and

NINOP tasks, and, in doina so, demonstrated knowledge of the

40

following aspects of proqramminq in BASIC:

-Numerical and string constants

-Assignment of a string or numerical constant to a
variable (i.e., A=5 or A="ARTICHOKE")

-Assignment of a variable's value to another variable
(i.e., A=B)

-INPUT and PRINT statements

DD then moved on to the TWOS task, which is described by BIP

as follows:

Write a program that counts by twos, up to a number given
by the user. For example, if they gave 8, your program
would print:
2
4
6
8

Use a FOR . . NEXT loop for this problem.

This oroblem can he solved by the following BASIC program:

1 REM N IS: THE NUMBER TO COUNT UP TO
10 PRINT "HOW HIGH SHOULD I COUNT?"
20 INPUT N
30 FOR I = 2 TO N STEP 2
40 PRINT I
50 NEXT I
99 END

The new skill introduced in this task is the use of the FOR

statement for the construction of iterative loops. This task was

selected by BIP's curriculum information network because DD had

successfullv completed tasks that required using inout/output

statements, the only other statements needed to solve this

problem.

DD) worked on this task for almost two hours, but never wrote

a completely successful proqram. Her nearly complete orogram

41

failed in a way that caused a fatal error condition in BIP which
5

terminated the session. The analysis of DD's protocol revealed

some serious confusions about BASIC and computer proqramming in

general:

* She was confused about variable assignment. Her protocol

suggests that she initially thought that the INPUT statement

should be used to assign values to variables (i.e., "INPUT X 8"

means "set X to 8"), and that she did not really understand that

usinq an INPUT statement in her program would allow her to enter

a value when she ran the proqram at a later time. It is

important to note that she was confused in this way even though

she had successfully completed several other BIP tasks that

required her to use INPUT and assignment statements.

* DD's handling of the FOR statement required by this

Proqram suqgested major misunderstandinqs at several different

levels. She tried several different (and illegal) forms of the

FOR statement (such as "FOR X = 2 - 8"), had problems determininq

the exact relation between the FOR and NEXT statements, and was

unsure of the proper way to incorporate the STEP information into

the FOR statement. Beyond the syntax of the FOR statement, she

had trouble qraspinq two ideas that are concerned with

hiqher-level aspects of proqramminq: (a) embeddinq one

conceptual group of statements (the statements to be repeatedly

5
DD's proqram consisted of the statements shown in the sample

program, but her specification of the upper bound and the index
variable of the FOR was incorrect. It is unclear how much
additional work by DD would have been required to correct this
error.

: 42

executed) within another qroup of statements
(the FOR and NEXT

statements that controlled the iteration), and (b) usinq the

FOR's index variable for some purpose in the statements within

the iterative loop. Althouqh she finally wrote a program that

had the vroner collection of statements in the riqht order --

INPUT, FOR, PRINT, NEXT, and END -- she confused the uses and

functions of the FOR's index variable and the number, entered

throuqh the INPUT statement, that controlled the upper bound of

the loop.

* She never had a qood understandinq of the overall Aesiqn

of the oroqram. The use of a variable to specify the upper bound

of the loop was the last nart of the proqram to be written;

throuqhout the majority of the session, she wrote FOR statements

with explicit upper hounds, either 8 or 10. She used the MORE

command -- the command that tells RIP that the student has

finished workinq on one problem and wants to qo on to another --

several times with oroqrams that contained such an explicit unper

hounid, indicatinq that she thought she had a correct oroqram even

with that incorrect construction.

Not all these problems can he blamed on DD herself. Rather,

some oF her problems can be attributed to various asnects of the

human t-utor, the modifie version of RTP, and BAS(.

3.4.1 Problems with BASIC

T4A3TC i7. in inriaq[nq1v common first comnntpr ninlian-, !-,Iit

;e h.i mi', 1j!h avantaqPous asmPcts Fr'r heciinninn nroarimmPr7.

Dr3r2-,o' , . "- 'n " otion -)lf t-riic -irpl roqi irwrn n-y.

43

structures can be very difficult to read and understand. In

addition, the restricted length of BASIC variable names (which

makes the use of meaningful mnemonics difficult) and the strict

format of statements (a line must contain ixactly one complete

statement) can also be expected to complicate the programming

task.

3.4.2 Problems with BIP

There are two aspects of BIP that should be improved in

future tutorial systems:

1: Limited display. The student's interaction with BIP must

take place within the twenty-four lines of a computer terminal's

screen. This greatly restricts the student's ability to work

simultaneously with a tutor, his program, and BIP. Twenty-four

lines are not enough to allow a student to keep track of the

current state of his program, the output produced by that

Proqram, recent chanqes made to the nrogram, interactions with

RIP, and hints obtained from several possible sources. DD often

entered proqram lines that were already present (at one point,

DD's TWOS proqram had four END statements), entered new lines

with the same statement number as already-entered statements

(thereby erasing the old and possibly correct statements), and

ran the Proqram with certain statements missing. A system that

used multiple "windows" to display the various components of the

tutorial interaction would avoid many of these problems. Such

terminals were not available when RIP was built, but future tutor

projects should take advantage of these systems.

2: Rigid input format. RIP offers no provisions for

44

correcting spelling or typing errors. Hence, when DD typed "RU

N" instead of "RUN", BIP could do nothing more than identify it

as an illegal command. If tutorial systems for beginning

programming require the students to enter their programs on a

keyboard (rather than choosing command names and arguments from a

menu, for instance), automatic spelling correction miqht be

useful.

3.4.3 Problems with the Tutor

Certain problems in DD's Performance can also be traced to

the tutor. In general, our tutors -- skilled computer

nroqrammers who qenerally did not have substantial teaching

experience -- did quite well. When a hint was requested, they

were consistently able to identify the student's problem and

offer a relevant hint. Whether or not that hint was the "right"

or the "best" hint is beyond the scope of this research. For

now, the best evidence for the appropriateness of our tutors'

hints is that, after receiving hints, students always worked on

their problem before requesting another hint; on no occasion did

a student indicate, by asking for two consecutive hints, "I

understand that -- my problem is...".

Our tutors' problems stem primarily from the fact that the

tutorial domain is very open-ended, and that instantaneously

qenerating hiqh-guality hints about any aspect of a programming

problem and a student's solution to that problem is not easy.

Some of these problems were mechanical and avoidable --

occasionally, a tutor would start to type a hint, change his

mind, and erase what he had written, one character at a time.

45

All of this was visible to the student in these experiments; a

minor modification would allow the tutor to compose his hint

carefully and send it to the student only when he was satisfied

with its form.

More relevant to this discussion, however, are the occasions

when the tutors' hints were inconsistent or ambiguous. For

instance, when DD was trying to construct a legal FOR statement,

the followinq interaction took place:

a: DD requested a hint, with her program in the following

state:

10 FOR X = 2 TO 8 STEP 2
20 PRINT X
30 END

b: The tutor said "You have a FOR on line 10, but nowhere do

you have a NEXT."

c: DD tried to change line 10 to:

10 FOR X = 2 TO 8 NEXT STEP 2

When RIP rejected this illegal statement, DD asked for another

hint.

d: The tutor said "I'm sorry, you misunderstood my last

hint. You need a NEXT statement on a different line AFTER the

PRINT statement...."

The source of this error lies in the differinq knowledge

structures possessed by the student and tutor that quide their

individual comDrehension of the sentence. While it is clear to

the tutor that NEXT belongs on a separate line -- because of his

46

prior experience with BASIC -- it is not so clear to DD, and the

observed misinterpretation occurs. This incident might have been

avoided if the tutor had said in his first hint, "...nowhere do

you have a NEXT statement."

A related problem with the different knowledge structures

possessed by student and tutor was illustrated by another part of

DD's session. DD had requested a hint when she was having

problems writinq a correct FOR statement; the tutor offered the

followinq hint:

If we want to set A to go from 1 to 10 and print A we
would write the following program:

10 FOR A-1 TO 10
20 PRINT A
30 NEXT A

This is similar to your task, except that
(a) you need to go from 2 to whatever number the user

typed.
(b) you want to count by twos.

This is done by saying:
FOR variable = start TO finish STEP 2.

DD responded to this hint by enterinq the statement:

FOR VARIABLE=START TO FINISH

The problem exposed here is that the tutor is using a particular

notational system common to experienced computer programmers:

statements are described bv presenting their required keywords in

capital letters (such as FOR and TO), and presenting variables

that must be specified by the proqrammer in lower case terms that

describe their function (e.g., variable, start, and finish). DD

does not possess this structure, so she interprets the tutor's

hint too literally. Mismatches of this nature were common in our

protocols; at one point, the tutor was explaining the use of the

47

STEP keyword in the FOR statement:

To tell the loop what to step by use the following form:

10 FOR something = something TO something STEP NUMBER

where NUMBER is the number you want to step by.
To count by 5's you would say ... STEP 5.

DD then entered:

6
10 FOR X=2 TO 820 STEP 2

The mismatch here lies in the tutor's use of "..." to stand

for the part of the FOR statement she had already written. In

addition, the problem exists because of BASIC's requirement that

the STEP information he on the same line as the FOR statement; a

less rigidly formatted language would not have nosed this
7

problem.

These problems illustrate the advantaqes and disadvantages

of "canned" hint systems and intelligent tutorinq systems. While

it is impossible to anticipate every occasion for which a canned

hint should be constructed, hints can be very carefully worded

for those circumstances that can be anticipated. In contrast,

while human tutors possess the problem-solvinq power systems such

as BIP lack, the task of diaqnosinq a student's problem, deriving

6
Note DD's failure to use a variable for the loop's upper

bound.
7

On the other hand, such a language would not have revealed
this oroblem in DD's conceptualization of the task, and DD would
probablv have written her future FOR loops with the STEP
information on a separate line.

48

a sound hint for that problem, and converting that hint to an

unambiguous piece of natural language (all while being under the

time pressure of trying to generate this hint as quickly as

possible) is extremely complex for even human tutors.

3.4.4 Problems with the "Hint Button" Approach

We originally proposed to study tutoring systems with "hint

buttons" as a way of isolating one part of the intelliqent

tutorinq domain. By providing hints only upon request, we could

bypass the complex issue of identifyinq the circumstances under

which the tutorinq system should interrupt the student with a

hint, and concentrate our efforts on techniques for qeneratinq

these hints. These techniques are described in the discussion of

TURTLE (Section 4). However, with the present experiments, we

can address the question of whether successful tutors miqht be

built by takinq this shortcut, and, like the modified BIP system

and TURTLE, qivinq hints only when a student requested them.

These experiments suggest that such a shortcut would not be

reasonable.

A surDrisinq findinq of these experiments was that our

subjects were hesitant to request hints from the tutor; requests

averaged only about four Per session (Table 6). The fact that,

in these experiments, the students had to ask another person for

help does not seem to he part of the problem. The students were

also unlikely to take advantage of BIP's help facilities, and, in

some informal experiments, there was a similar hesitancy to

request hints on the part of students who worked with TURTLE,

whose hint facility was completely automated.

L

4q

Our experiences with both tutorial systems sugqest that one

of the commonly cited educational advantages of programminq --

that writinq a computer proqram is often like solving a puzzle or

even playing a game -- works against the idea of a "hint button".

Subjects seemed to treat the use of the hint button as cheating,

or something that should be done only as a method of last resort.

It could be arqued that our subjects were simply not

motivated strongly enough to request hints, and that more

encouragement would lead to more requests for hints. However,

this would ignore the long-range problem of the design of an

"intelligent", hint-qiving, tutor. One of the reasons our tutors

could successfully identify the student's problem when a hint was

requested was because students requested hints so infrequently.

When DD entered

10 FOR X = 2 TO 8
20 STEP 2 flagged as illegal by BIP
20 STEP 2 flagged as illegal by BIP
20 X = STEP 2 flagged as illegal by BIP}
STEP 2 flaqged as illeqal by BIP
20 STEP 2 flaqqed as illegal by BIPI
20 STEP 2 flagged as illegal by BIPt

before finally askinq for a hint, it was clear she was having

trouble with the syntax of the FOR/STEP statement. Without this

repetition, the tutor might not have been able to identify her

problem. Suppose DD had entered line 10, as in the above

example, and, after realizing that she did not know how to

specify the STEP statement, asked for a hint. Working only with

the single statement thus far entered by the student, the tutor

could offer hints referring to the absence of of the STEP

component of the FOR statement, the missing NEXT statement, or

the fact that the FOR uses an explicit upper bound rather than a

variable. Only one of these alternatives would correspond to the

student's real problem, and the tutor would need additional

evidence to select the right one. With frequent hints and no

supplementary information from the student to help identify his

problem, effective tutoring would be difficult.

The study of these protocols leads to two conclusions.

First, interruption by the tutorial system to qive certain hints

would not be bevond the capability of current "intelligent

tutoring systems" technoloqy. Many of the hints students

requested were preceded by repeated syntax errors like those

shown above. While the comprehension and diagnosis of a computer

proqram's desiqn is considerably more difficult than identifying

syntax errors, a tutorial system capable of diagnosing repeated

syntax errors and interrupting the student with a hint about the

statement's nroper form would not be difficult. Further, a

detailed theory of how people learn to program is not really

needed in order to suggest that a student who makes several

consecutive identical errors should be interrupted with

corrective advice (although such a theory would be critical to

qeneratinq the best Possible hint).

Second, the communication between a student and a tutorial

system should be more flexible than allowing the student, in

effect, to say nothing more than "I need help!". In most cases,

the diagnosis of a student's problem will be facilitated by

allowing the student to describe why he is requesting a hint.

Natural lanquaqe would ultimately be useful for this purpose;

although the difficulties of building natural language systems in

51

unconstrained domains are well-known, a tutorial dialogue in a

particular domain might provide sufficient constraint to make

such a system possible (cf. Brown & Burton, 1975; Stevens &

Collins, 1977). Alternatively, the tutorial system might offer a

menu of problems the student could be having, and allow the

student to identify the relevant one. A simple system might have

a predefined menu that was meant to cover all the problems a

student might have, while a more advanced system might infer a

smaller set of possible problems from the tutorial context. If a

student workinc on the TWOS problem entered "FOR I = 2 TO 8" and

reauested a hint, the system might offer the menu:

Do you want help on:
1: the STEP component of the FOR statement
2: the NEXT statement
3: the use of variables in FOR statements
4: something else
5: nothing (you don't want any help)

These topics for possible hints would he identified by

comparing the correct statement to the statement entered by the

student and offering help about each of the mismatches between

the statements (e.q., the absence of the STEP component in the

FOR statement, the unentered NEXT statement, and the improper use

of a numerical constant as the upper bound of the loop) or some

other oroblem not included in this list, as well as the option of

rejectinq help.

3.5 Advantages of a Human Tutor

What are the properties of a human tutor that make his

suogestions more valuable to a student than the help offered by

BIP? The assistance a',ailable from the tutor and from BIP

differed in two ways:

52

* Flexibility: Unlike BIP's help messages, which are tied to

specific command or statement errors, a human tutor can, at any

time, offer help on any part of the tutorial interaction. In

addition, a tutor can properly interpret a very larqe number of

ways of solving a particular problem, whereas BIP's diagnosis of

a student's proqram assumes a particular approach to the problem.

* Specificity: Although BIP can describe in general terms

the statements that comprise a program (i-.e., "... you need an

IF statement and two PRINT statements..."), identify illegal

statements, and offer assistance on the proper forms of these

statements when errors occur, it can offer very little help once

the student has entered a statement that is syntactically leqal,

but incorrect in the context of the current problem. In

contrast, a human tutor can evaluate a leqal statement and

determine that some subpart of the statement -- perhaps the

variable that specifies the tipper bound of a FOR statement -- is

at fault. Recall that the oriqinal version of BIP does have a

"hint" facility, through which students can receive hints by

issuinq the BIP command "HINT", but since these hints are

predefined in much the same way as the help RIP offers after

statement errors, this facility can offer neither flexibility nor

specificity. For instance, BIP's hint for TWOS is:

The -FOR- statement can make the loop count by twos
automatically. Look for an explanation of the 'step'
part of the statement.

Although this hint may sometimes be useful, it would not have

been much help to DD, who knew that she had to specify STEP

information, but did not know the right way to do this.

53

In human tutors these properties come from knowledge of the

problem at hand, general programming and problem solving

techniques, and a variety of educational and tutorial strategies.

The second portion of this report describes a system that,

through its partial representation of these kinds of knowledge,

can qive a student more flexible and specific tutorial

assistance. While this work is only a beginning, it brings us a

step closer to more "intelligent" computer-based tutoring.

94

Section 4

Program Understanding and Synthesis in LOGO: The TURTLE Tutor

TURTLE is a tutorial system that provides "intelliqent"

assistance for a student solvinq a set of tasks in LOGO

proqramminq: this assistance is intended to be appropriate to the

student's plan for solving the task and specific to the problem

facing the student when help is regutested. TURTLE uses analysis

by synthesis techniques to interpret the student's program, to

generate hints upon request by the student, and to assist the

user in correcting flawed programs.

LOGO programs draw figures on the screen of a graphics

terminal by simulating the movement of a "turtle". The turtle

can draw a line on the screen correspondinq to its movement. At

the beqinninq of a session, the turtle is in the center of the

screen, facing north; its position can be changed with the
A

following primitives

-DRAW X: move forward X units, drawing a line.

-MOVE X: move forward X units without drawing a line.

-TURN X: turn the turtle X deqrees clockwise.

A student's program can be made up of these primitives and

references to user defined functions. The current implementation

of TURTLE does not support recursion, iteration, variable

assignment, or subroutine calls more than one level deep.

8
Note that these orimitives differ sliqhtly from those

described by Papert (1980), and in fact correspond to those
defined in OGOL (Section 2).

55

Programs that meet these constraints can draw simple pictures

like TRIANGLE, TREE, WELL, and NAPOLEON (Figure 2), the four

tasks that form the current version of TURTLE.

A student working with TURTLE is qiven the task of writing a

LOGO program that will draw one of these figures. This program

may simply be a series of LOGO statements -- an open coded

oroaram -- or it may decompose the figure into a number of

subfigures, each of which is drawn by a function defined by the

student. For instance, the WELL (see Figure 2) can be decomposed

into the triangle at the top of the figure, the square at the
9

bottom, and the line that connects the triangle and the square.

In whatever way the program is written, TURTLE's task is to

identify the Dlan used by the student to construct this program

and to use this plan to help the student locate and correct

errors in the program.

4.1 Sample TURTLE Sessions for the TRIANGLE and WELL Tasks.

When a student begins a session with TURTLE, he is'presented

with a general discussion of computers and the LOGO languaqe.

During this discussion, he can experiment with the various LOGO

primitives by entering statements and observing their results.

The student then solves the TRIANGLE and TREE tasks. Next, the

concept of proqram decomposition is introduced, and the student

is encouraged to use decomposition to solve WELL and NAPOLEON.

9
Other decompositions are possible, of course; TURTLE's

analysis of problems with several different decompositions is
described in Section 4.2.5.

56

TRIANGLE TREE

a

cb c Z b

f e 9

h f h
i S

i)\i

WELL
NAPOLEON

Figure 2 Sample TRIANGLE, TREE, WELL, and NAPOLEON Figures

57

4.1.1 TRIANGLE: Interpreting Open Coded Solutions

The first task presented to students by TURTLE was TRIANGLE,

in which the student was to write an open coded proqram to draw

an equilateral trianqle (see Figure 2; note that the triangle is

"pointing" upward). The followinq is a trace of a hypothetical

subject's solution of this problem; TURTLE's output is in

boldface. This section presents only a sample interaction with

TURTLE -- a detailed description of how TURTLE operates will

follow.

TURTLE first displays the correct solution of the trianqle

task on the qraphics terminal; this figure can he drawn by a

proqram that starts at vertex A (Figure 2) and proceeds as

follows:

TURN 30
DRAW 200
TURN 120
DRAW 200
TURN 120
DRAW 200

The student is then asked to define TRIANGLE:

TRIANGLE is not yet defined. Please enter the steps in
TRIANGLE. (Type QUIT to end the function definition,
RESTART to start over, and DELETE to delete the last
step.)

First step? DRAW 200
Next step? TURN 60
Next step? DRAW 200
Next step? QUIT
OK, TRIANGLE is defined!

There are several errors in the student's proposed proqram.

Only two of the three sides of the triangle are drawn, and the

58

rotation between the first two steps should be TURN 120, rather

than TURN 60. Despite the presence of these errors, TURTLE

discovers three paths through the trianqle that provide

relatively good matches to the student's program, and asks the

student which of these corresponds to his path through the

figure:

Did you to intend to follow path C A B C? NO
Did you to intend to follow path B C A B? NO
Did you to intend to follow path A B C A? YES

Having identified the path used by the student, TURTLE

generates the followinq analysis of the student's program, which,

if desired, can be presented to the student:

Analysis of your program:

Student Correct Commentary
Code Code

DRAW 200 DRAW 200 Correct mainstep to draw
line segment AB

TURN 60 TURN 120 Incorrect interface to turn
through angle ABC

DRAW 200 DRAW 200 Correct mainstep to draw
line segment BC

TURN 120 Missing interface to turn
through angle BCA

DRAW 200 Missing mainstep to draw
line segment CA

TURTLE then displays the figures corresponding to desired

solution and the student's current solution on the qraphics

terminal, and beqins the debugging process:

5 C

Disregarding the orientation for now, what bugs, if
any, do you see in the function TRIANGLE?

1 - NO BUGS
2 - MISSING STEPS
3 - INCORRECT STEPS
4 - EXTRA STEPS

>2

The student says that there are missinq steps; TURTLE

aqrees, and offers further information:

Yes, there are MISSING STEPS in the function TRIANGLE.
You did not mention the following bugs: The function
TRIANGLE has INCORRECT STEPS.

At this point, TURTLE shows the student his program and

allows him to make modifications or to request a hint; the

student requests a hint.

Here are the steps you are editing:

DRAW 200
TURN 60
DRAW 200

What would you like to do?

1 - SHOW FUNCTION
2 - BUGS REPORT
3 - DELETE STEP
4 - CHANGE STEP
5 - INSERT STEP
6 - RECEIVE HINT
7 - FINISH EDITING

>6
(RECEIVE RINTi

Here, TURTLE offers a qeneral hint about the missinq steD --

You are missing the line seqment from C to A -- after which the

student asks for another hint. This hint is more specific:

You are missinq the step DRAW 200 to draw the line
seqment from C to A.

60

At this point, the student has been returned to the editing

menu, asks to insert a step, and enters DRAW 200 at the end of

his program, which will draw the third side of the triangle. He

then requests another hint, and receives help on one of the

missing TURNs:

You are missing the rotation to turn through angle BCA.

When this hint is displayed, the line segments that make up

angle BCA are highlighted in the displays of the correct drawing

and of the results of the student's current program. The student

then asks to enter the step TURN 60 between the latter two DRAW

200's. However, TURTLE rejects this addition:

That step does not need to be inserted anywhere. A
TURN does need to be inserted, but the value 60 is
incorrect.

At this noint, the student determines that a 120 degree turn

is needed, and enters a TURN 120; the result of this revised

program is then displayed. The student now asks for another

hint; TURTLE replies

The rotation to turn through angle ABC is incorrect.

and highlights the rotations in both the correct drawing and the

student's current drawinq. The student continues by requesting

another hint, and is told:

The rotation to turn through angle ABC should be
TURN 120 instead of TURN 60.

Here, the student uses the CHANGE STEP option in the editing

menu to change the TURN to 120 degrees, and then selects FINISH

61

EDITING. The function is now correct, and TURTLE reports: The

function TRIANGLE has no bugs!

Although the function itself is correct, the figure's

orientation is not: the trianqle "points" to the right, rather

than upward. TURTLE now asks the student to specify interface

steps that will correct this orientation error:

You provided no setup for the TRIANGLE-TASK. What
bugs, if any, do you see in the orientation of TRIANGLE?

The student says that there are missing steps, and TURTLE

aqrees:

Yes, there are MISSING STEPS in the orientation of
TRIANGLE. No setup interface for TRIANGLE has been
provided. What would you like to do?

Here, the student asks for a hint regarding the interface,

and, after receivinq it --

Another TURN command is necessary to orient TRIANGLE
correctly.

inserts it at the correct place. The student again asks to

FINISH EDITING, and TURTLE tells him that he has completed the

task.

4.1.2 WELL: Decomposing a Complex Figure

The followinq section describes TURTLE's tutoring of the

more complex WELL task, and focuses on how TURTLE recognizes

standard task decompositions and helps the student debulq

interfaces and fiqure orientation.

62

The session begins with the display of a wishinq well (see

Fiqure 2); TJRTLE then asks the student to enter his program,

here called WELL.

First step? TOP
Next step? DRAW 200
Next step? BOX
Next step? QUIT
OK, WELL is defined!

The student has decomposed the WELL into three steps: his

plan is to draw the top of the WELL with the function TOP, the

base with the function BOX, and the POLE with the open coded DRAW

200. TURTLE now determines the student's plan from this program:

Let me see if I understand your program:
The function TOP draws the ROOF of the WELL-TASK.
The code: DRAW 200 draws the POLE of the WELL-TASK.
The function BOX draws the BASE of the WELL-TASK.

Does that seem correct? YES

BV identifyinq the student's plan for the program -- in

oarticular, the purposes of the TOP and BOX functions and the

open coded DRAW -- TURTLE will he able to identify errors and

offer the same kinds of advice that it did in the TRIANGLE

example. TURTLE now asks the student to define either TOP and

BOX; the student chooses to work on TOP first.

TOP is not yet defined. Please enter the
steps in TOP.

First step? DRAW 100
Next step? TURN 120
Next step? DRAW 100
Next step? TURN 120
Next step? DRAW 100
Next step? TJRN 180
Next step? QUIT
OK, TOP is defined!

Note that this is identical to the definition of TRIANCLE

shown previously, except for the addition of TURN 180 at the end

of the proqram, which is meant to put the the turtle in the

Droner position for drawinq the WELL's POLE. (-his statement

alone is not sufficient; this error will be corrected later.)

1TURTLE now tries to determine the plan underlvinq the student's

TOP program, and again asks which of the three possible paths

throuqh the WELL's triangle corresponds to the student's plan:

Did you to intend to follow the path B C A B? NO
Did you to intend to follow the path A B C A? NO
Did you to intend to follow the path C A B C? YES

Using this plan, TURTLE determines that the student's

function is correct; the final TURN 180 is classified as part of

the interface between the TOP and the (open coded) POLE. TURTLE

now moves the student on to the definition of the BOX function:

BOX is not yet defined. Please enter the steps in BOX.
First step? DRAW 100
Next step? TURN 90
Next step? DRAW 100
Next step? TURN 90
Next step? DRAW 100
Next step? TURN 90
Next step? DRAW 100
Next step? QUIT
OK, BOX is defined!

As before, TURTLE determines the path the student planned to take

throuqh the box:

Did you to intend to follow the path F G I H F? YES

and notes that the code for BOX is correct.

Now that the student has defined the three components of the

figure, he must define a series of interface steps that will

properly position these narts of the program with respect to each

64

other. TURTLE first checks its hypothesis about the interface

between the TOP and the open coded POLE:

Did you intend to interface the function TOP to the
step DRAW 200 by following the path C D ? YES

TURTLE now shows the student whatever interface steps are

already present in his proqram (here, there is only one -- TURN

180) and compares them to the correct interface:

Here is the interface you defined between the mainsteps

in the function TOP and the step DRAW 200:

TURN 180

Analysis of your interface between the function TOP and
the step DRAW 200 in WELL:

Student Correct Commentary
Code Code

TURN 180 TURN 180 Correct interface to turn
through angle BCD

MOVE 50 Missing interface to move
over line segment CD

TURN 90 Missing interface to turn
through angle CDE

TURTLE now quides the student through these modifications

until the correct interface has been constructed. Similar steps

are taken in constructinq an appropriate interface between the

open coded POLE and the BOX. TURTLE then checks the orientation

of the entire fiqure and detects another error: although the

components of the fiqure itself are correct, the figure as a

whole is at an incorrect anqle. TURTLE asks the student about

errors in this orientation --

You provided no setup for the WELL-TASK.
What bugs, if any, do you see in the orientation of WELL?

Here, the student requests and receives a hint -- Another

TURN command is necessary to orient WELL correctly -- and enters

the necessary sten -- TURN 30. The figure is now constructed

correctly, and the session ends.

4.2 TURTLE: Plan Understanding via Analysis by Synthesis

The key to any successful tutorial system is to understand

the plan that the student has generated to solve the problem at

hand. In this project, this key is understanding the design of

the student's LOGO program and the function of each of the steps

of the program. To this end, TURTLE exploits the constraints of

the turtle graphics domain and the restricted subset of the LOGO

language used here: TURTLE's first step in identifying the

design of a student's program is to generate the entire set of
10

"viable" paths through the fiqure and to compare them to the

oath drawn by the student's program. Since plans can he

associated with these candidate paths when they are qenerated,

the oroblem of idetifvinq the student's plan is reduced to the

problem of finding the path that offers the best match to the

student's proqram.

This process requires three classes of knowledge structures;

the remainder of this section describes these structures and how

they are used to achieve the qoals of appropriate and specific

student assistance. TURmLE s curriculum structure specifies the

10
Viable oaths are those with a limited number of path retraces

(repeated traversals of the same line segment) -- typically no
more than one -- and with line seqments that are broken no more
than once.

66

textual information and function calls that comprise the tutorial

session. Its task networks provide thorough descriptions of the

figures to be drawn by students and are essential to TURTLE's

analysis by synthesis evaluation of a student's program. TURTLE

uses a figure's task network to synthesize a number of programs

capable of drawing this figure. Differences between these

programs and the student's proposed program are then noted by

means of annota-ions to the synthesized programs. These

annotations are used to identify the student's plan, by findinq

the synthesized proqram that most closely matches the student's

program, and to quide the construction of hints, by means of a

set of hint generation structures that detect particular error

annotations and construct hints that reflect the presence of

these errors.

4.2.1 Curriculum Structure

For each problem in the curriculum that is to be presented

by TURTLE, two functions are defined: a presentation function

that will carry out the actual tutoring of the problem, and a

successor function that will determine the next problem that

should be presented to the student. An executive function then

retrieves and executes the presentation function for the selected

problem (thereby carrying out this problem's tutorial session),

and, by executing the successor function, selects the next

problem that will be given to the student. The successor

function can, in principle, base this decision on such factors as

the student's performance on the current and previous problems.

However, at this early stage in TURTLE's development, the

problems' successor functions simply pass the student through the

67

TRIANGLE, TREE, WELL, and NAPOLEON tasks, in that order.

4.2.2 Task Representation

As described previously, TURTLE qenerates all viable paths

through a figure and then matches the student's proqram against

these paths. To qenerate these paths, TURTLE must have a

representation of the figure that is explicit enough to support

path generation, yet general enough to allow for errors in the

student's proqram and for variations in the size and orientation

of the figure drawn by the student.

TURTLE uses a svstem of task networks to organize this

information. The task networks for the TRIANGLE and WELL figures

are shown in Tables 7 and 8.

These networks are frame-like units with the following

slots:

-TASK-NAME: the name of the task.

-FIGURE-GEOMETRY: a specification of the vectors and
anqles that comprise the figure. This slot specifies:

-VERTICES: the points of the figure that are to he
connected.

-CONNECTIONS: the line segments that connect the
figure's vertices. This slot also contains
information about the size and possible
subdivision of the line segments.

-INTERFACES: the size of anqles formed by connected
line segments.

-STARTING-POINTS: the vertices that may be used to
begin the fiqure's construction.

-DESIRED-ORIENTATION: the orientation of a particular
line segment, by which the orientation of the entire
figure can be determined.

-POSSIBLE-NAMES: a list of possible names for the figure
and any subfigures.

68

Table
7:

TUR'TLE's task network for TRIANGLE.
References to vertices correspond to those of the

figures shown in Fiqure 2.

TASK-NAME: TRIANGLE

FIGURE-GEOMETRY:

VERTICES:
(a b c)

CON ECTIONS:
((join a b)

via (line-segment 1 x))
((join a c)

via (line-segment 1 x))
((join b c)

via (line-segment 1 x))
(default-for x 100)

INTERFACES:
(c a h angle 60)
(h c a anqle 60)
(a b c angle 60)

START1ING-POINTS:
(start-at (a b c))

DESIRED-ORIENTATION:
(orientation a b should-be 150)

EXPECTED-DECOMPOSITIONS:
(trianqle -> oven-code))

EXAMPLE-SOLUTION:

((turn 30)
(draw 1 x)
(turn 120)
(draw 1 x)
(turn 120)
(draw 1 x))
((setup-for-task)
(draw-line-segment c a)
(turn-through-anqle c a b)
(draw-line-segment a b)
(turn-through-angle a b c)
(draw-line-segment b c))

69

Table 8:

TURTLE's task network for WELL.

TASK-NAME: WELL

FIGURE-GEOMETRY:

VERTICES:
(a b c d e f q h i)

CONNECTIONS:
((join a b) ;Roof of the well

via (line-seqment 2 x))
((join a c)

via (line-segment 2 x))
((join b c)

via (line-segment 2 x)
contains ((h d) (c d))
subdivided-by d)

((join h d)
via (line-seqment 1 x)
contained-in b c)

((join d c)
via (line-segment 1 x)
contained-in b c)

;Pole of the well
((join d e)

via (line-segment 1 z))
;Base of the well

((join h f)
via (line-segment 2 v)
subdivided-by e
contains ((h e) (e f)))

((join f q)
via (line-seqment 2 v))

((join q i)
via (line-segment 2 v))

((join i h)
via (line-seqment 2 v))

((join h e)
via (line-sement 1 v)
contained-in h f)

((join e f)
via (line-segment l v)
contained-in h f)

(default-for (x 100) (v 100) (z 200))

INTERFACES:
(d c a angle 60) (a b d angle 60)
(c a h angle 60) (b c a angle 60)
(a h c angle 60) (e f q angle 90)
(i h e anqle 9O) (q i h anqle 90)
(f q i angle 90) (h f q angle 90)

70

(i h f angle 90) (d e h angle 90)
(f e d angle 90) (e d b angle 90)
(c d e anqle 90) (c d b anqle 180)
(b c d angle 0) (c b d angle 0)
(h e f anqle 180) (f h e angle 0)
(h f e angle 0)

STARTING-POINTS:
(a b c d e f q h i))

DESIRED-ORIENTATION:
(orientation i q should-be 90)

POSSIBLE-NAMES:
(roof is-also-called (triangle roof ro tri tr top))
(pole is-also-called (pole po line li line-segment

vect middle mid))
(base is-also-called (base ba square sq squ bottom

bot bo))
(tree is-also-called (tree))

EXPECTED-DECOMPOSITIONS:
(well -> roof Dole base

(Vertices:
((roof a b c d)
(pole d e)
(base h e f q i)))

(Termination-Points:
(((roof enainq-point) d)
((vole startinq-point) d)
((pole endinq-voint) e)
((base starting-point) e))))

(well -> base pole roof
(Vertices:

((roof a b c d)
(pole d e)
(base h e f g i)))

(Termination-Points:
(((roof starting-point) d)
((pole endinq-point) d)
((pole starting-point) e)
((base endinq-point) e))))

(well -> tree base
(Vertices:

((tree a b c d e)
(base h e f q i)))

(Termination-Points:
(((tree endinq-voint) e)
((base startinq-point) e))))

(well -, base tree
(Vertices:

((tree a b c d e)
(base h e f g i)))

(Termination-Points:
(((tree startinq-point) e)
((base ending-point) e))))

71

(well -> open-code)

EXAMPLE-SOLUTION:
((turn 270)
(draw 1 x)
(turn 120)(draw 2 x)
(turn 120)
(draw 2 x)
(turn 120)
(draw 1 x)
(turn 270)

(draw 1 z)
(turn 90)
(draw 1 v)
(turn 270)
(draw 2 v)
(turn 270)
(draw 2 v)

(turn 270)
(draw 2 v)
(turn 270)
(draw 1 y))

((setup-for-task)
(draw-line-segment d c)
(turn-through-angle d c a)
(draw-line-segment c a)
(turn-through-angle c a b)
(draw-line-seqment a b)
(turn-through-angle a b d)
(draw-line-segment b d)
(turn-through-angle b d e)
(draw-line-segment d e)
(turn-through-angle d e h)
(draw-line-segment e h)
(turn-through-angle e h i)
(draw-line-segment h i)
(turn-throuqh-anqle h i g)
(draw-line-segment i q)
(turn-through-angle i g f)
(draw-line-segment q f)
(turn-through-angle q f i)
(draw-line-segment f e))))

(default-6indings well ((X 100.0) (Y 100.0) (7 200.0)))

72

-EXPECTED-DECOMPOSITIONS: descriptions of how the figure
might be decomposed. For each of the figures that can
be decomposed (TRIANGLE cannot), this slot lists the
sets of vertices that comprise these subfiqures and the
acceptable beqinninq and ending points for the
subfigures.

-EXAMPLE-SOLUTION: a LOGO program that, once exact
values for the line segments have been determined, will
draw the fiqure correctly. This structure also
contains qeneral descriptions of the function of each
of the statements of the program, such as
DRAW-LINE-SEGMENT and TURN-THROUGH-ANGLE.

4.2.3 Program Synthesis

These task networks provide the descriptive information

TURTLE uses to qenerate the viable oaths through a fiqure and the

LOGO programs that correspond to these paths. The resultinq

paths can then be matched against the student's code, errors can

be detected and diagnosed, and appropriate hints can be given.

This path qeneration depends upon the specification of the

fiqure's STARTING-POINTs and CONNECTIONS. TURTLE generates all

viable oaths from each of the fiqure's starting points, as

determined by the connections between the fiqure's vertices. In

TRIANGLE's task-network, since all three of the triangle's

vertices are specified as starting points, paths through the

triangle would be generated from vertices A, B, and C. The

connection information would then guide the oath construction

process: two paths would he built from vertex A, based on the

line segments between vertices A and B and between A and C. These

naths are then expanded in a similar way: for instance, the "A ->

B" oath is expanded to "A -> B -> C" via the line segment from R

to C. This generation process operates under three constraints.

First, all the figure's line segments must appear in the final

73

path. Second, a line segment can be traversed more than once,

but only one of the traversals can be a DRAW; the rest must he

retraces that MONE over the already drawn line. Third, no more

than a fixed number of retraces may take place -- if retraces

were not limited, an infinite number of open coded solutions

would exist for even the simplest figures. Our experiments with

TURTLE limited the number of acceptable retraces to one.

This technique produces six possible paths for the TRIANGLE

fiqure:

A ->B ->C ->A A ->C ->B ->A
R -> C -> A -> B B -> A -> C -> B
C -> A -> B -> C C -> B -> A -> C

These paths are then converted into LOGO code by referring to the

task network's specifications of line seqments and interface

anqles. Consider the path "A -> B -> C -> A". The first step in

this path, "A -> B", corresponds to the CONNECTIONS entry:

((JOIN A B) VIA (LINE-SEGMENT 1 X))

(see Table 7) and a DRAW is qenerated. Since the absolute size

of the fiqure that will be drawn by the student cannot be

oredicted, the lenqth of this line seqment is specified in terms

of a constant and a variable. The "1 X" in the "(LINE-SEGMENT 1

X)" structure indicates the desired lenqth of the line segment as

the product of the scale factor, 1, and a variable, X; the

oseudo-LOGO statement "DRAW 1 X" is qenerated. These

constarit-variahle pairs allow TURTLE to interpret student

proqrams of any absolute size; the only requirement for a correct

oroqram is that the relative sizes of the fiqure correspond to

74

those defined in the task network. Default values for these

variables are specified so that TURTLE can generate executable

LOGO code from these structures before explicit line segment

lengths have been specified.

The next step in this oath is "B -> C"; here, TURTLE should

build the code not only for the DRAW from B to C, but also the

TURN that will draw this line segment in the proper direction.

This TURN through the angle ABC is derived from the angle's

INTERFACE specification:

(A B C ANGLE 60)

The instruction "TURN 120" results: the 60 degree interior angle

of the triangle is generated by turning the turtle through the

120 deqree exterior angle. The remaining instructions for this

path and for the other five oaths are generated in this way,

producing six solution structures:

(SOLUTION1 (SOLUTION2 (SOLUTION3
(A B C A) (B C A B) (C B A C)
(DRAW 1 X) (DRAW 1 X) (DRAW 1 X)
(TURN 120) (TURN 120) (TURN 120)
(DRAW 1 X) (DRAW 1 X) (DRAW 1 X)
(TURN 120) (TURN 120) (TURN 1201
(DRAW 1 X)) (DRAW 1 X)) (DRAW 1 X))

(SOLUTION4 (SOLUTION5 (SOLUTION6
(A C B A) (C B A C) (B A C B)
(DRAW 1 X) (DRAW 1 X) (DRAW 1 X)
(TURN 240) (TURN 240) (TURN 240)
(DRAW 1 X) (DRAW 1 X) (DRAW 1 X)
(TURN 240) (TURN 240) (TURN 240)
(DRAW 1 X)) (DRAW 1 X)) (DRAW 1 X))

4.2.4 Proqram Recognition

Once these solution structtures have been generated, a

student's nrooosed program can be matched against these

75

structures. Since an exact match will occur only if the program

is correct, partial matching techniques are used to permit and

identify differences between the prooosed and correct solutions.

Recall the illustrated TRIANGLE task once again: the

student's proposed program was:

DRAW 200
TURN 60
DRAW 200

This proqram must he matched against the six proposed solutions

shown above. The first step in this process is to build a

matching structure from this program; this is done by replacing

each argument of the oroaram's TURN statements with position

variables, which can match any angle value -- including the value

of incorrect turns -- and by insertinq before and after each

program statement seqment variables, which can match any number

of statements and so can identifv statements the student has

incorrectly entered or omitted from his proqram. This procedure

produces the structure:

$SO (DRAW 200) SSI (TURN ?ANGLE) $S2 (DRAW 200) $S3)

which must be matched against the pronosed solutions, perhans

SOLUTIONl:

(DRAW 1 X) (TURN 120) (DRAW 1 X) (TURN 120) (DRAW 1 X)

mhis match will succeed, as the result of four separate

steps. First, the program's first DRAW matches the solution's

first DRAW, qivinq X -- the variable used to specify the lenqths

of line segments -- a value of 200. Note that the matcher

attempts to match DRAWs wherever possible, rather than letting

76

DRAWs be matched by segment variables. As a result, the segment

variable SSO receives no value. Second, the program's TURN

matches the solution's TURN, with the position variable ?VALUE

set to 120 (not 60, as in the student's original program). Since

this successfully matched TURN immediately followed the

previously matched DRAW, $Sl receives no value. Third, the

program's second DRAW matrhes the solution's second DRAW; the

success of this match results in SS2 receiving no value. Fourth,

since the student's program ends with this second DRAW, the

segment variable SS3 is matched to the remaining statements in

the solution -- (TURN 120) and (DRAW 1 X).

This technique is used to match the student's program

against the proposed solutions. Each of these matches is then

given penalty points that determine the match's "badness of fit";

the following ad hoc rules are used to award these points:

-Missing stens: 1 point.

-Incorrect TURNs:

-If the sum of the angles is 180 degrees, .25
point. This rule will trap the common error of
specifying turns by their interior, and not
exterior, angles.

-If the oroposed and correct turns are both
clockwise (less than 180 degrees) or both
counterclockwise (between 180 and 360 degrees), .5
point.

-Otherwise, 1 point.

This method awards SOLUTION1 above a score of 2.5 points: 2

points for the two missing steps, and .5 point for the TURN

statement: the exact anqle of the TURN is wrong, but, like the

correspondinq statement in the solution, it is in a clockwise

77

direction. Since SOLUTION1, SOLUTION2, and SOLUTION3 all use

clockwise turns, they all will receive scores of 2.5. Similarly,

since SOLUTION4, SOLUTION 5, and SOLUTION6 are identical, but use

counterclockwise turns to solve the problem, they will receive

scores of 3 points. The incorrect TURN in these solutions

receives a penalty score of 1 point.

SOLUTION1, SOLUTION2, and SOLUTION3 are retained as

candidates for the correct interpretation of the student's plan,

since they share the score that indicated the best

orogram-solution match. However, TURTLE cannot determine which

of these three solutions is correct without knowing which of the

vertices of the triangle was used by the student as the starting

noint of his proaram. This problem can be resolved only by

askinq the student which of the three hypothesized paths

corresponds to his own:

Did you to intend to follow path C A B C? NO
Did you to intend to follow path B C A B? NO
Did you to intend to follow path A B C A? YES

In this way, the correct solution -- here, SOLUmIONI -- can

he identified, and the plan corresponding to this solution can be

used to analyze and correct the errors in this program.

4.2.5 Program Decomposition

The simplicity of the TRIANGLE task makes the identification

of the student's plan very straightforward. However, the

technique described above will be less successful as the tasks to

which it is applied become more complex and the number of

possible paths through these fiqures increases. This problem can

78

be avoided by encouraging the student to decompose a large

problem into a set of smaller problems. Problem decomposition is

typically good programming style and would simplify TURTLE's task

considerably. It would have to do the kinds of analysis shown

above only on simple figures such as triangles and squares, where

the number of viable paths is small. However, this

simplification comes at a price: ,TURTLE must be able to identify

how the student is decomposing the problem, so that proper

interpretations can be given to the program segments that carry

out the individual tasks.

TURTLE interprets a student's decomposition in much the same

way it determines the plan underlying an open coded oroqram. Its

strategy is based on two assumptions about how people will solve

these problems:

-Peonle will decompose a problem that draws a complex

fiqure into a set of functions that draw regular

figures such as triangles, rectangles, and circles.

-Peoole will use mnemonic names for the functions that

carry out particular subparts of the problem: a

function that draws the square base of the well will

Drobablv be called BASE or SQUARE.

TURTLE exploits these assumptions in the following ways.

The first assumption implies that TURTLE need anticipate only

those decomoositions made up of regular figures. Descriptions of

these orobable decompositions can then be included in a figure's

task network; the expected decompositions for WELL include

structures such as the following (the full set of expect d

decompositions can be found in WELL's task network in Figure 8):

79

EXPECTED-DECOMPOSITIONS:
(WELL -> ROOF POLE BASE

(VERTICES:
((MOOF A B C D)
(POLE D E)
(BASE H E F G I)))

(TERMINATION-POINTS:
(((ROOF ENDTNG-POINT) D)
((POLE STARTING-POINT) D)
((POLE ENDING-POINT) E)
((BASE STARTING-POINT) E))))

This structure states that the WELL consists of a ROOF, a

POLE, and a BASE. The ROOF is drawn by vertices A, B, C, and D

(see Figure 2), the POLE by vertices D and E, and the BASE by

vertices R, F, G, H, and I. The WELL can also be drawn as a T REE

and a BASE; a structure that represents this decomposition is

also included in WELL's task network. TURTLE will use some

subset of these four names to internally describe how the student

has decomposed the WELL problem. All programs involving

decomposition will be determined to be some collection of the

subfiqures ROOF, POLE, BASE, and TREE.

The identification of students' decompositions would be

simple if students used only these four names for the subfigure

functions. This, of course, is not the case. However, since

people will probably give the subfigure functions mnemonic names,

the number of probable function names is limited. Like the

figure decompositions, these names can be enumerated and included

in the figure's task network; the names recognized by TURTLE for

the functions used to draw the possible subparts of WELL -- ROOF,

POLE, TREE, and BASE -- are str'lctured as follows:

80

POSSIBLE-NAMES:
(ROOF IS-ALSO-CALLED (ROOF RO TRIANGLE TRI TR

TOP))
(POLE IS-ALSO-CALLED (POLE PO LINE LI

LINE-SEGMENT VECT
MIDDLE MID))

(BASE IS-ALSO-CALLED (BASE BA SQUARE SQ SQU
BOTTOM BOT BO))

(TREE IS-ALSO-CALLED (TREE))

These structures are then used to identify the decomposition

used by a student. Recall the proposed program for the WELL task

(Section 4.1.2):

TOP
DRAW 200
BOX

The decomposition represented by this program is determined

by convertinq the proqram into a matching structure and comparinq

it to the possible decompositions. The construction of this

matchinq process requires three steps:

-Each student function name that appears in the
POSSIBLE-NAMES structure is replaced by the concept
under which the function name is indexed. By this
rule, the student function name TOP is converted to
ROOF.

-Each function name that does not appear in the
POSSIBLE-NAMES structure is converted to a position
variable: since BOX is not a name known to TURTLE, it
is replaced by the position variable ?BOX.

-All strinqs of LOGO function calls are replaced bv
seqment variables: the DRAW 200 statement is replaced
by $SO.

This conversion process produces the matching structure

(ROOF $SO ?BOX)

which can be matched against the set of nossible decompositions

of the WELL; as before, SSO can match any strinq of statements,

and ?BOX can match any single item. The best match comes from

81

the decomposition

(ROOF POLE BASE)

which leads to TURTLE's interpretation of the student's program;

Let me see if I understand how you are going to solve
the WELL-TASK:
The function TOP draws the ROOF of the WELL-TASK.
The code: DRAW 200 draws the POLE of the WELL-TASK.
The function BOX draws the BASE of WELL-TASK.

Does that seem correct? YES

Note that the matching process will fail if the student

writes a proqram with function names that are recognized by

TURTLE, but that appear in an unexpected order, such as ROOF ->

BASE -> POLE. When given such a program, TURTLE will ask the

student to define the paths to be drawn by each of these

proqrams; if these completely describe the figure to be drawn, it

will proceed with this decomposition. TURTLE also allows the

student to define new decompositions through a similar technique

of askinq the student to define the naths taken by the new

functions.

4.2.6 Specifying Setup Orientations and Interfiqure Interfaces

The discussion thus far has concentrated on the generation

of programs that correctly draw the basic figures that make up

the tasks discussed here -- trianqles, squares, and the like.

There are two further tasks, however, that affect the correctness

of a LOGO program. These are concerned with the spatial

orientation of the proqram's components.

As n&),,d in the sample TRIANGLE session, the following code

generates a correct triangle:

82

DRAW 100
TURN 120
DRAW 100
TURN 120
DRAW 100

Since the student began this figure at vertex A, the above

code will produce a triangle that "points" to the right. Since

the turtle beqins a session facinq due north, the first DRAW also

goes north. Facing north is only one of many possible

orientations, however, and is in fact incorrect. As shown in

Figure 2, the generated triangle must point upward. The program

needs an additional "setup" step at the beginning of the program

-- TURN 30 -- to place the triangle in its proper orientation.

The figure's orientation is specified in TRIANGLE's task

network as its DESIRED-ORIENTATION:

(ORIENTATION A B SHOULD-BE 150)

This form states that the line segment from A to B should form a

150 degree anqle with a horizontal line. Since the angles drawn

in turtle-qraphics systems are assumed to be rigid, the entire

orientation of an otherwise correct figure can be determined by

examining this one segment.

TURTLE determines the current orientation of this line

segment by generatinq (via the fiqure's task network CONNECTIONS)

a nath from the line segment backward to the starting point of

the figure, which the student identified when he verified

TURTLE's interpretation of his plan. Since the line segment

drawn at the very beginning of the figure will have an

83

orientation of zero degrees, and the angles between the line

segments that make up this path are also specified in the task

network, the actual orientation of AB can be computed. TURTLE

can then determine the size of the "setup" turn from the

difference between the desired and actual orientations of AR;

here, that difference is 30 degrees. The student can then be

tutnred on the construction of this interface.

The second orientation problem is caused by the

decomposition of a program into simpler tasks. As shown earlier,

the WELL problem can be logically subdivided into three subtasks

-- a square, a line, and a triangle. Both of the functions and

the open coded line segment written by the student in the sample

session (Section 4.1.2) were individually correct; however, these

functions, when called one after another, produce the incorrect

drawing shown in Figure 3.

One error in this figure is that no setup orientation is

present; a more significant problem, however, is that the figures

are not interfaced properly: the POLE leaves the TOP and enters

the BOX at the wrong places. Although the student whose session

appears in Section 4.1.2 tried to define an interface between TOP

and the DRAW -- via the TURN 180 at the end of TOP -- additional

statements are needed between all three of these statements to

insure that the three figures are prooerly positioned.

Unfortunately, no one set of interface statements exists that

11
unless the program beqan with a TURN statement, in which case

the first line segment will have an orientation corresponding to
the angle of the TURN.

0'

i

a!

ef

c d h

Figure 3 The WELL Figure Drawn by the Student's Initial

(and Incorrect) Decomposition

85

might he identified and included in the figure's task network as

were figure decompositions, because the student's design of the

subfigures will determine the steps required to interface these

figures. TURTLE must therefore wait until the student has

defined the starting and ending points of his subfigures, and

then generate interface steps that are appropriate for these

functions.

When the interface between two subfiqures is being

generated, TURTLE has determined how the student has decomposed

the task, and so knows which vertices are drawn by which

subfigures. In the example above, TURTLE has determined that TOP

follows the oath C -> A -> B -> C, the DRAW that creates the

WELL's POLE moves from D to E, and BOX follows the oath F -> G ->

I -> H. The interface steps between TOP and the DRAW must

therefore move the turtle from C to D (from the ending point of

TOP to the starting point of the DRAW) and position it properly

for the subsequent DRAW. Similarly, the interface steps between

the DRAW and BOX must move from E to F and Position the turtle

properly for the drawing of the BOX. These paths can be

generated in much the same way as the paths that draw the

individual figures: by generating all sequences steps through the

figure, subject to the constraints on retraces described in

Section 4.2.3. TURTLE generates the paths C -> D and C -> A -> B

-> D as possible interfaces between vertices C and D. These paths

are then converted to LOGO code, again in much the same way as

the original programs -- by using the specifications of line

segments and angles in the task's figure-qeometry to convert the

paths into an appropriate set of TURNs and DRAWs. Note that

86

TURTLE must refer to the steps immediately before and after the

interface steps to determine the initial and final TURNs. To

correctly turn onto the path from C to D, TURTLE must know the

orientation of the turtle upon reaching vertex C, which would

depend upon whether the student drew TOP along the path C -> A ->

B -> C or the path C -> B -> A -> C. Since, in this example,

TURTLE knows that the student followed the path C -> A -> B -> C

in TOP, the following possible interface solutions result:

(SOLUTION1
(C D)
(TURN 180) ; turn through anqle DCD
(MOVE 1 X) ; move over line segment CD
(TURN 90)) ; turn through angle CDE

(SOLUTION2
(C A B D)
(TURN 120) ; turn through angle ACD
(MOVE 2 X) ; move over line segment AC
(TURN 120) ; turn through angle CAB
(MOVE 2 X) ; move over line segment AB
(TURN 120) ; turn through angle ABD
(MOVE 1 X) ; move over line segment BD
(TURN 270)) ; turn through angle BDE

The student's interface is matched against these two

possible solutions. As before, points are awarded that evaluate

the quality of the match (although a different system for

awarding point values is used here), and the solution with the

better (i.e., lower) score is selected. Here, SOLUTION1 is the

better solution -- its TURN 180 matches the student's interface

exactly, and its number of steps is much closer to that of the

student's plan -- and so will be used to debug the student's

interface.

87

4.2.7 Program Annotation and Hint Generation

Once the plans underlying the student's programs and

interfaces have been identified, TURTLE tries to identify any

errors that may be oresent in the program. This identification

is a two-step process. First, patterns are constructed that

describe the intent of each statement of the program and whether

that statement achieves that intent; second, these patterns are

matched against predefined structures that reveal the presence of

certain kinds of errors.

Proqram errors are interpreted by matching the student's

actual program to the program that, as hypothesized by TURTLE,

corresponds to the student's plan. The result of this match is a

set of PROGRAM-STEP structures, one for each statement of the

correct program. These structures are of the form:

(PROGRAM-STEP number
step-representation
evaluation
intended-action)

A program-step's NUMBER is simply the ordinal number of the

step in the correct program. The STEP-REPRESENTATION consists of

an arbitrary and unique label for the steo, followed by the

correct statement itself. The EVALUATION states whether the stepi

is CORRECT or INCORRECT in the student's program, or whether it

is MISSING. The INTENDED-ACTION is a general description of the

statement's function -- such as (DRAW-LINE-SEGMENT B C) -- which

is obtained from the EXAMPLE-SOLUTION entry in the figure's task

network.

This analysis can be demonstrated via the sample session

A8

with the TRIANGLE task in Section 4.1.1. The proposed and

correct programs for this task were:

Analvsis of your program:

Student Correct Commentary
Code Code

DRAW 200 DRAW 200 Correct mainstep to draw
line segment AB

TURN 60 TURN 120 Incorrect interface to turn
through angle ABC

DRAW 200 DRAW 200 Correct mainstep to draw
line segment BC

TURN 120 Missing interface to turn
through angle BCA

DRAW 200 Missing mainstep to draw
line segment CA

The followinq proqram-step structures are built from these

correct and incorrect programs:

(PROGRAM-STEP 1
(T0014 DRAW 200)
CORRECT
(DRAW-LINE-SEGMENT A B))

(PROGRAM-STEP 2
(T0015 TURN 60)
INCORRECT
(SHOULD-BE TURN 120)
(TURN-THROUGH-ANGLE A B C))

(PROGRAM-STEP 3
(T0016 DRAW 200)
CORRECT
(DRAW-LINE-SEGMENT B C))

(PROGRAM-STEP 4
(T0020 TURN 120)
MISSING-STEP
(TURN-THROUGH-ANGLE B C A))

(PROGRAM-STEP 5
(T0021 DRAW 200)
MISSING-STEP
(DRAW-LINE-SEGMENT C A))

R9

In this analysis, program-steps
1 and 3 identify correct

statements (the two DRAWs). Step 3 is incorrect (the turn should

be 120 degrees), and steps 4 and 5 are missing.

When a student requests a hint, these pattern-step

structures are matched aqainst a set of hint generation

structures (Table 9) that describe particular proqramminq errors,

such as the omission of a step or a TURN through an incorrect

angle. Due to the constrained nature of the turtle-qraphics

task, the number of possible errors is finite and relatively

small, and hint qeneration structures can be constructed for

each. The hint generation structures are examined secuentiallv,

and the first match found is used as the basis of a hint;

different hinting strategies can therefore be established by

ordering these structures in different ways.

TTRTLE's hint generation rules are currently ordered so as

to first detect and offer help on steps missing from the

student's program. The first hint generated in the sample

TRIANGLE task (Section 4.1.1) then focuses on the absence of the

final DRAW in the student's nroqram -- You are missing the line

segment from C to A. This hint is the result of the match

between the program-step structure correspondinq to the missing

DRAW:

(PROGRAM-STEP 5
(T0021 DRAW 200)
MISSING-STEP
(DRAW-LINE-SEGMENT C A))

and the hint generation pattern:

Table 9:

TURTLE's hint generation structures, in the form:
(error-condition => general-hint specific-hint)

Hints for missinq steps:

1: (proqram-step ? (? draw ?value) missing-step ?thL ,,

=>

("You are missing the line segment from "
(start-node ?intention) " to
(end-node ?intention) ".")

("You are missing the step DRAW " ?value
" to draw the line segment from "

(start-node ?intention) " to
(end-node ?intention) ".")

2: (proqram-step ? (? move ?value) missing-step ?intenvi-n)

("You are missing a retrace over the line segment frrrw
(start-node ?intention) " to
(end-node ?intention) ".")

("You are missing the step MOVE " ?value
" to retrace over the line segment from "
(start-node ?intention) " to
(end-node ?intention) ".")

3: (and (is-current-task orientation-interface)
(proqram-step ? (? turn ?value) missinq-step

?intention))

=>

("Another TURN command is necessary to orient "
TASK-NAME " correctly.")

("TURN " ?value " is the setup step necessary to orVJr,>-
TASK-NAME " correctly.")

4: (and (not (is-current-task orientation-interface))
(proqram-step ? (? turn ?value) missing-step

?intention))

=>

("You are missinq the rotation
to turn through anqle "

(first-node ?intention) (second-node ?intention)
(third-node ?intention) ".")

("You are missing the step TURN " ?value ".")

Hints for extra steps:

1: (and (is-current-task orientation-interface)
(program-step ? (? turn ?value) extra-step))

("Only one TURN command is needed to set up the
orientation correctly.")

("The step TURN " ?value " is unnecessary.")

2: (and (not (is-current-task orientation-interface))
(program-step ? (? turn ?value) extra-step))

("There is an extra TURN command in your interface.")

("The step TURN " ?value " is unnecessarv.")

3: (and (is-current-task orientation-interface)
(nroqram-step ? (? move ?value) extra-step))

("MOVE commands are not needed in the orientation
interface.")

("The step MOVE " ?value " is unnecessary.")

4: (and (not (is-current-task orientation-interface))
(oroqram-step ? (? move ?value) extra-step))

("There is an extra MOVE command in your interface.")

("The sten MOVE " ?value " is unnecessary.")

Hints for incorrect steps:

1: (and (is-current-task orientation-interface)

(is-missinq-step turn)
(program-step ? ?step incorrect

q2

(should-be ? ?value) ?intention))

("The setup rotation for " *TASK-NAME* " is incorrect.")

("TURN " ?value ", not TURN " (parameter ?step)
" should be the setup for " *TASK-NAME*)

2: (and (not (is-current-task orientation-interface))
(is-missinq-step turn)
(Proqram-step ? ?step incorrect

(should-be ? ?value) ?intention))

("The rotation to turn through angle
(first-node ?intention) (second-node ?intention)
(third-node ?intention) " is incorrect.")

("The rotation to turn through angle "

(first-node ?intention) (second-node ?intention)
(third-node ?intention) " should be TURN
" ?value " instead of TURN " (parameter ?step)
it.)

3: (and (is-missinq-step move)
(proqram-step ? ?step incorrect

(should-be ? ?value) ?intention))

("The retrace to move over line seqment "
(start-node ?intention) (end-node ?intention)
" is incorrect.")

("The retrace to move over line seqment "

(start-node ?intention) (end-node ?intention)
" should he MOVE " ?value " instead of MOE "
(parameter ?step) ".")

AD-A11G 020 TEXAS INSTRUMENTS INC DALLAS CENTRAL RESEARCH LASS F/6 5/9
INTELLIGENT TUTORING FOR PROGRAMMING TASKS. USING PLAN ANALYSIS--ETC(Ul
MAR 82 J R MILLER, T P KEHLER, P R MICHAELIS N0001-80-C-0818

UNCLASSIFIED TI-08-82"010 ONR-TR-82-0818F NL

2-2fffllf IIII

flCffffffff

93

(PROGRAM-STEP ?
(? DRAW ?VALUE)

MISSING-STEP
?INTENTION)

Position variables are at the heart of this match: "?"

matches anything, "?VALUE" matches any numerical value (such as

the extent of a DRAW or a TURN), and "?INTENTION" matches any

intended-action pattern, such as (DRAW-LINE-SEGMENT C A). Each

of the hint generation structures is associated with two hints,

one general and one specific:

General hint:
("You are missing the line segment from

(START-NODE ?INTENTION)
to n

(END-NODE ?INTENTION)
U.-)

Specific hint:
("You are missing the step DRAW

?VALUE
" to draw the line segment from
(START-NODE ?INTENTION)
* to"
(END-NODE ?INTENTION)
U.)

Presenting a hint to the student first requires determininq

whether the student should receive the general or the specific

hint. When a student first asks for a hint, TURTLE presents the

general hint; the specific hint is given in response to the

second request; no hints are given on subsequent requests. The

selected hint's pattern is then converted to the form the student

will actually see by merqinq the text in the selected hint's

pattern with the values of the variables and the function calls

embedded within that pattern. In the present example, the

following forms would be created:

L
.

a~~m:

General hint:
You are missing the line segment from C to A.

Specific hint:
You are missing the step DRAW 200 to draw the

line segment from C to A.

These proqram-step structures are also used to control the

student's correction of his program. After the student has

defined his proqram and TURTLE has carried out the analysis

described above, the student enters a debugginq phase, where he

is asked to identify and correct errors in his proqram (see the

trace in Section 4.1.1). When a student attempts to correct one

of these errors, a proqram-step structure is generated for the

modification. If this structure indicates the modification is

incorrect, TURTLE rejects the modification and tells him to try

aqain. Correct steps cannot be deleted, and incorrect steps --

typically TURNs with the wronq anqle specified -- must be

respecified with the correct value. In this way, the student is

kept workinq toward a correct solution at all times, although at

the cost of preventinq the student from experimenting with

different, possibly incorrect, versions of his program.

4.3 Areas of Future Development

This research was focused on developinq TURTLE's ability to

identify the plans underlyinq students' LOGO programs and to

offer hints that address errors in these plans. This initial

effort has been limited in two ways, each of which is an

important area for future research.

The first of these is to remove the restrictions on the

kinds of LOGO nroqrams that can be written; in particular, to

95

allow programs with variable assignment, recursion, and

iteration. Fortunately, these components of LOGO can be

incoroorated into TURTLE's existinq system of task networks by

modifyinq and extending the CONNECTIONS section of a fiqure's

task network. Consider the recursive function "BINARY-TREE

LENGTH DEPTH", which would draw a binary tree DEPTH levels deep,

with branches LENGTH units lonq. The task network for this

figure would state that, while some of the figure's points are

connected by MOVEs and DRAWs, others are connected by (recursive)

calls to the BINARY-TREE function. In evaluatinq a student's

program for this figure, TURTLE would have to determine that the

student's proqram called BINARY-TREE at the appropriate places,

and that the arquments defininq the length and number of the

hranches of the sub-tree were specified correctly. This process

would be no different from the way TURTLE currently determines

that, for instance, an angle is qenerated by a TURN of a

particular number of deqrees; such an extension is completely

compatihle with TURTLE's existing representational and analysis

by synthesis systems.

Other extensions of TURTLE -- ones which reach beyond the

domain ol turtle qraphics -- are Dossible. However, one should

not overlook the advantages of workinq within a hiqhly

constrained domain such as turtle graphics. TURTLE is successful

largely because of the detailed problem representation found in

the system's task networks; these make possible the generation of

a set of possible solutions, one of which should correspond to

the plan underlying the student's proqram. The success of future

applications of TURTLE's methodology will depend upon the

96

presence of a comparably detailed specification of the new

domain's tasks.

The second area in need of development is the construction

of a reasonable pedagogical component for TURTLE, one that can

develop a sound model of the student and use this model to

control the tutorial process. TURTLE currently lacks a

well-developed curriculum system such as that in RIP (Barr, et

al., 1976), in which the tasks presented to students are selected

on the basis of the skills the student has and has not yet

acquired; the task selection strategies used by BIP would provide

a sound beginning for this work. There is also much room for

improvement in TURTLE's hinting capability. This project did not

address the questions of when a student should be interrupted

with a hint, and TURTLE has only primitive strategies for

determining the exact hint a student should receive: TURTLE

qives a general hint when a hint is first requested, and gives

more specific hints in response to further requests. The nature

of these problems is discussed in the summary; for now, it should

he noted that these insufficiencies can be corrected only by the

development of powerful student models, which will itself depend

upon careful research into the psychological issues underlying

the question of how people learn to program.

97

Section 5

Summary

The results of this research are encouraging with respect to

the overall feasibility of constructing intelligent tutorial

systems. TURTLE can exploit the limited structure of (a modified

version of) LOGO and the proqramming problems presented to

students to generate hints relevant to a student's oroposed

solution. We have thus far run only informal experiments with

TURTLE, which have not been suitable for a detailed comparison of

TURTLE to a more traditional tutor such as RIP. However, TURTLE,

like the human tutors in the BIP studies, can identify the errors

in a student's program and offer specific desiqn-level and

code-level hints relevant to these errors. In addition, TURTLE's

use of menus and multiple windows corrects some of the human

enqineerinq problems observed in the RIP/HINT experiments.

As is often the case, however, the results of this research

may raise more questions than they answer. In varticular:

* What strategies and knowledge structures are acuired by

people learning to program? The LOGO programs written by our

subjects typicallv went through two stages. First, the primary

figures (triangles, squares, etc.) were drawn correctly, but

were interfaced incorrectly; second, the interfaces among these

figures were gradually corrected. These studies suggest that

people have good strategies for drawing regular geometric

figures, but not for building the interfaces between figures.

Our subjects' major difficulty in drawing regular figures

98

was learninq to specify the figures' angles by turning the turtle

through some number of degrees. Some of these constructions were

more difficult to learn than others: a 90 degree right turn is

made by "TURN 90", while a 90 degree left turn is made by "TURN

.. .270; an equilateral triangle (with equal interior angles of 60

degrees) is qenerated by successively drawing the trianqle's

exterior 120 degree angles. These were not major problems for

our students, however. After working through the TRIANGLE task

in TURTLE, they were almost always able to correctly build the

square and trianqular components of the more complex figures

taught by TURTLE, such as WISHING-WELL and NAPOLEON. In

contrast, students had considerable difficulty building

interfaces that interconnect the regular components of these

complex figures. Most of these interfaces were initially

incorrect, and most of the time spent by a student in a session

with TURTLE was devoted to correcting interfaces. It is clear

that, as people become more familiar with LOGO and turtle

graphics, they become more able to build correct interfaces, and

the study of the development of successful interface strategies

may offer some valuable insights into computer proqramming as a

coqnitive process.

What constitutes a good hint? When a tutor has decided that

a student needs a hint, that hint should

* address the immediate problem the student is having, and

* create in the student a strong conceptual understanding of

the Problem's solution, so that future hints will be unnecessary.

i.-M

99

These goals typically interfere with each other. The

student's immediate problem can best be solved by simply giving

the student a set of program statements that will produce the

desired result; if the student simply copies the provided

solution, however, it is doubtful he will retain this advice for

use at a later time. At the other extreme, if the tutor gives a

vague, general hint about how the problem might be solved, the

student will probably not acquire enough new information to allow

him to either solve the immediate problem or increase his

long-term understanding of the domain. A good tutorial system

should provide hints that address the specific gaps and fallacies

in the student's understanding of the problem. These errors may,

of course, occur at any of the several levels of abstraction that

characterize the student's problem representation, such as the

multiple levels of design and code structures encountered in the

proqramminq tasks studied here.

This issue has received little study; it has been addressed

in the work by Collins and his colleagues on Socratic tutorial

systems (Collins, Aiello, Warnock, & Miller, 1975; Stevens &

Collins, 1977). Most existing systems try to deal with this

problem by providing two levels of hints (see the discussions of

the OGOL tutor, BIP, and TURTLE): a general hint is given first

(in these proqramminq language tutors, these are often related to

the design of the program or individual statements), followed by

a more specific hint (often showing program statements similar to

or the same as those that will solve the problem). This

technique only approximates a tutor that can target the

specificity of its hints to the needs of the student. Since such

100

a system does not always offer hints that address the exact

nature of a student's problem, it forces the student who needs

fairly specific help on the form of particular statements to ask

for several hints, many of which may provide irrelevant or even

confusinq information. More significantly, students can become

aware of this aspect of the tutor very quickly (as did some of

the subjects in our informal experiments with TURTLE), and

realize that the exact answers to their problems can be obtained

simply by asking for several hints. Some students may then

deliberately ask for multiple hints in order to be told the

answer to their problem, while others who view askinq for hints

as admitting failure (see Section 3.4.4) may avoid hints

altogether for fear of beinq given a hint that reveals the exact

answer. Beinq able to qenerate a truly appropriate hint for a

particular student in a particular task is thus a critical

component of a truly successful tutor, one that will depend upon

understandinq the psychological components of the instructional

and learning experiences, and incorporatinq these components into

an accurate model of the student and the tutorial environment.

101

References

Atwood, M. E., & Jeffries, R. Studies in plan construction:

Analysis of an extended protocol. Technical Report

SAI-80-028-DEN, Enqlewood, Colorado: Science Applications, Inc.,

1980.

Barr, A., Beard M., & Atkinson, R. The computer as a

tutorial laboratory. International Journal of Man-Machine

Studies, 1976, 8, 567-596.

Brown, J. S., & Burton, R. Multiple representations of

knowledge for tutorial reasoning. In D. Bobrow & A. Collins

(Eds.), Representation and understanding. New York: Academic

Press, 1975.

Clancey, W. J., Bennett, J. S., & Cohen, P. R.

Applications-oriented AI research: Education. In A. Barr & E. A.

Feiqenbaum (eds.), Handbook of artificial intelligence. Los

Altos: William Kaufmann, 1981.

GentneL, D. The FLOW tutor: A schema-based tutorial system.

Proceedinqs of the Fifth International Joint lonference on

Artificial Intelligence, 1977, 787-788.

Gentner, D., & Norman, D. A. The FLOW tutor: Schemas for

tutorinq. Technical RePort 77-02, La Jolla, California:

University of California at San Diego Center for Human

Information Processinq, 1977.

Goldstein, I. P. Summary of MYCROFT: A system for

understanding simple picture programs. Artificial Intelligence,

102

1975, 6, 249-288.

Miller, M. L. A structured planning and debugging

environment for elementary programming. International Journal of

Man-Machine Studies, 1979, 11, 79-95.

Miller, M. L., & Goldstein, I. P. Structured planning and

debugging. Proceedings of the Fifth International Joint

Conference on Artificial Intelligence, 1977.

Papert, S. Mindstorms. New York, Basic Books, 1980.

Sleeman, D., & Brown, J. S. Intelligent tutoring systems.

New York: Academic Press, 1981.

Stevens, A. L., & Collins, A. The goal structure of a

socratic tutor. Technical Report 3518, Bolt Beranek and Newman,

Inc., 1977.

103

Appendix A:

TURTLE's implementation

12
TURTLE is implemented in ASSERT, a CONNIVER-like

assertional database system implemented in MACLISP. It uses a

standard computer terminal for input and the display of TURTLE's

oroqram analysis, and a high resolution color graphics terminal

(512 x 512 pixels) for the display of LOGO figures.

During the task solution and assistance process, TURTLE uses

two graphics windows and one text window on the graphics

terminal. The graphics windows display the figure a correct

program should draw and the figure drawn by the student's current

program. These two windows occupy the left half of the screen on

the graphics terminal. A text window on the right half of the

screen window displays program definitions and modifications,

hints, and tutorial text. TURTLE can be run without a graphics

terminal, although a diagram of the four tasks will be required

to follow TURTLE's operation.

TURTLE's response time varies, but is usually under 3

seconds for requests for hints, program edits, text display, and

similar operations. Open coded solutions can take more time,

dependinq on the complexity of the figure to be analyzed (an open

coded solution for the tree task with one or zero retraces can be

recognized in 15 seconds or less).

12
ASSERT was designed by Mark Miller and William Murray, and

implemented by Murray.

TI/Kehler March 25, 1982 Page 1

Navy Navy

Dr. Ed Aiken 1 CAPT Richard L. Martin, USN
Navy Personnel R1D Center Prospective Commanding Officer
San Diego, CA 92152 USS Carl Vinson (CVN-70)

Newport News Shipbuilding and Drydock Co
I eryl S. Baker Newport News, VA 23607
NPRDC
Code P3q9 1 Dr. James McBride
San Diego, CA 92152 Navy Personnel R&D Center

San Diego, CA g2152

1 Dr. Robert Breaux

Code N-711 1 Dr William Montague
NAVTRAEQUIPCEN Navy Personnel R&D CenterOrlando, FL 32R11 San Diego, CA 92152

CDR Mike rurran 1 Ted M. I. Yellen
Office of Naval Research Technical Information Office, Code 201
P00 N. Quincy St. NAVY PERSONNEL R&D CENTER
Code 270 SAN DTEGO, CA 92152
Arlington, VA 22217

1 Library, Code P2O1L
DR. PAT FEDERTCO Navy Personnel R&D Center
NAVY PERSONNEL R&D CENTER San Diego, CA 92152
SAM DIEGO, CA 92152

1 Technical Director
Dr. John Ford Navy Personnel R&D Center
Navy Personnpl R&D Center San Diego, CA 92152
Snn Diego, CA 92152

6 Commanding Officer
LT Steven D. Harris, MSO, JSP Naval Research Laboratory
Codc A021 Code 2627
Naval Air Development Center Washington, DC 20390
Warminster, Pennsylvania 1P9741

1 Psychologist
1 r. Jim Hollan ONR Branch Office
Cone 30"1 Bldg 114, Section D
Navy Personnel R & D Center 666 Summer Street
San Diego, CA 92152 Boston, MA 02210

Dr. Iformnn J. Kerr 1 Office of Naval Research

rhipf of Navil TPchnical Training Code 437
Naval Air Ft-tion Memphis (75) P00 N. Quincy SStreet
Millington, TN 38054 Arlington, VA 22217

1 r. William L. Maloy 5 Personnel & Training Research Programs
Principal Civilian Advisor for (Code 458)

Education and Training Office of Naval Research
Naval Training Command, Code O0A Arlington, VA 22P17

Pensacola, FL 1;50!1

I

TI/Kehler March 25, 1982 A-, .

Navy Navy

Psychologist 1 Dr. Alfred F. Smode
ONR Branch Office Training Analysis & Evaluation Group
1030 East Green Street (TAEG)
Pasadena, CA 91101 Dept. of the Navy

Orlando, FL 32813
Special Asst. for Education and

Training (OP-01E) 1 Dr. Richard Sorensen
Rm. 2705 Arlington Annex Navy Personnel R&D Center
Washington, DC 20370 San Diego, CA 92152

Office of the Chief of Naval Operations 1 Roger Weissinger-Baylon
Research Development & Studies Branch Department of Administrative Sciences

(OP-115) Naval Postgraduate Sc;:.-ol
Washington, DC 20350 Monterey, CA 93940

LT Frank C. Petho, MSC, USN (Ph.D) 1 Dr. Robert Wisher
Selection and Training Research Division Code 309
Human Performance Sciences Dept. Navy Personnel R&D Center
Naval Aerospace Medical Research Laborat San Diego, CA 92152
Pensacola, FL 32508

1 Mr John H. Wolfe
Dr. Gary Poock Code P310
Operations Research Department U. S. Navy Personnel Research and
Code 55PK Development Center
Naval Postgraduate School San Diego, CA 92152
Monterey, CA 93940

Roger W. Remington, Ph.D
Code L52
NAMRL
Pensacola, FL 32508

Dr. Bernard Rimland (03B)
Navy Personnel R&D Center
San Diego, CA 92152

Dr. Worth Scanland, Director
Research, Development, Test & Evaluation
N-5
Naval Educntion and Training Command
NAS, Pensacola, FL 32508

Dr. Robert G. Smith
Office of Chief of Naval Operations
OP-9897
Washington, DC 20350

...en.er March 25, 1982 Page.

Army Army

1 Technical Director 1 Dr. Frederick Steinheiser
U. S. Army Research Institute for the Dept. of Navy

Behpvioral and Social Sciences Chief of Naval Operations
5001 Eisenhower Avenue OP-113
Alexandria, VA 22333 Washington, DC 20350

1 Mr. James Baker 1 Dr. Joseph Ward
Systems Manning Technical Area U.S. Army Research Institute
Army Research Institute 5001 Eisenhower Avenue
5001 Eisenhower Ave. Alexandria, VA 22333
Alexrndrip, VA 22333

1 Dr. Beatrice J. Farr
U. S. Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 2233?

1 DR. FRANK J. HARRT!
U.S. ARMY RESEARCH INSTITUTE
5001 ETSENHOWER AVENUE

ALEXANDRIA, VA 22313

1 Dr. Michael Kaplan
U.S. ARMY RESEARCH INSTITUTE
5001 EISENHOWER AVENUE
ALEXANDRIA, VA 22?33

I Dr. Milton S. Katz
Training Technicl Area
U.S. Army Research Institute
5001 Fisenhower Avenue
Alexandria, VA 22333

1 Dr. Harold F. O'Neil, Jr.
Attn: PER I-K
Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA ?2111

1 Dr. Robert Sasmor
U. S. Army Research Institute for the

Pehavioral and Social Sciences
5001 Eisenhower Avenue
Alexandria, VA 22333

TT/Kehler March 25, 1982 Page 41

Air Force Marines

U.S. Air Force Office of Scientific 1 H. William Greenup
Research Education Advisor (E031)

Life Sciences Directorpte, NL Education Center, MCDEC
Rolling Air Force Base Quantico, VA 22134
Washington, DC 20332

1 Special Assistant for Marine
Dr. Genevieve Haddod Corps Mattprs
Program Manager Code 100M
Life Sciences Directorate Office of Navel Research
AFOSR 800 N. Quincy St.
Bolling AFP, DC 20112 Arlington, VA 22217

2 3700 TCHTW/TTGH Stop 32 1 DR. A.L. SLAFKOSKY
Sheppard AFB, TX 7t311 '.CTENTTFTC tDVTSOR (COTE RD-1)

HO, U.S. MARI !F CORPS
WASHTNGTON, DC 20?pO

A.'/erner raron eo, ivae Page t

Coast Gunrd Other DoD

Chief, Psychological "Peserch Branch 12 Defense Technical Information Center
U. S. Coast Guard (G-P-1/2/TP42) Cameron Station, Bldg 5
Washington, DC 20593 Alexandria, VA P2314

Attn: TC

1 Military Assistant for Training end
Personnel Technology

Office of the Under Secretary of Defense
for Research & Engineering

Room 3D129, The Pentagon
Washington, DC 20301

1 DARPA
1400 Wilson Blvd.
Arlington, VA 22209

TI/Kehler March 25, 1982 Page 6

Civil Govt Non Govt

Dr. Susan Chipman 1 Dr. John R. Anderson
Learning and Development Department of Psychology
National Institute of Education Carnegie Mellon Upiversity
1200 19th Street NW Pittsburgh, PA 15213
Washington, DC 20208

1 Anderson, Thomas H., Ph.D.
Dr. John Mays Center for the Study of Reading
National Institute of Education 1714 Children's Research Center
1200 19th Street NW 51 Gerty Drive
Washington, DC 20208 Champiagn, TL 61820

William J. MeLaurin 1 Dr. John Annett
66610 Howie Court Department of Psychology
Camp Springs, MD 20031 University of Warwick

Coventry CV4 7AL
Dr. Arthur Melmed ENGLAND
National Intitute of Education
1200 19th Street NW 1 1 psychological research unit
Washington, DC 20208 Dept. of Defense (Army Office)

Campbell Park Offices
Dr. Andrew R. Molnar Canberra ACT 2600, Austral.i
Science Education Dev.

and Research 1 Dr. Alan Baddeley
Fitional Science Foundation Medical Research Council
Washington. DC 20550 Applied Psychology Unit

15 Chaucer Road
Dr. Joseph Psotka Cambridge CB2 2EF
National Tnstitute of Education ENGLAND
1200 19th St. NW
Washington,DC 20201 1 Dr. Patricia Baggett

Department of Psychology
Dr. Frank Withrow University of Colorado
U. S. (ffice of Education Boulder, CO 80309
1100 Marylnnd Pve. SW
Washington. DC 20202 1 Mr Avron Barr

Department of Computer Science
Dr. Joseph L. Young, Director Stanford University
Memory & Cognitive Processes Stanford, CA 914305
Nntlonnl Fciencc Foundation
Washington, DC 20550 1 Liaison Rcientists

Office of Naval Research.
Branch Office , London
Box 39 FPO New York 09510

1 Dr. Lyle Bourne
Department of Psychology
University of Colorado
Boulder, CO R0309

TI/Kehler March 25, 1982 Page 7

Non Govt Non Govt

Dr. John S. Brown 1 Dr. Meredith P. Crawford
XEROX Palo Alto Research Center American Psychological Association
3333 Coyote Road 1200 17th Street,. N.W.
Palo Alto, C .914304 Washington, DC 20036

Dr. Bruce Buchanan 1 Dr. Kenneth B. Cross
Department of Computer Science Anacapa Sciences, Inc.
Stanford University P.O. Drawer Q
Stanford, CA 911305 Santa Barbara, CA 93102

DR. C. VICTOR BUNDERSON 1 LCOL J. C. Eggenberger
WICAT INC. DIRECTORATE OF PERSONNEL APPLTED RESEARC
UNTVERSITY PLAZA, SUITE i0 NATIONAL DEFENCE HQ
1160 50. STATE ST. 101 COLONEL BY DRIVE
OREM, UT 84057 OTTAWA, CANADA KIA OK2

Dr. Pat. Carpenter 1 Dr. Ed Feigenbaum-
Department of Psychology Department of Computer Science
Carnegie-Mellon University Stanford University
Pittsburgh, PA 15213 Stanford, CA 94305

Dr. John B. Carroll 1 Dr. Richard L. Ferguson
Psychometric Lab The American College Testing Program
Univ. of No. Carolina P.O. Box 168
Davie Hall 013A Iowa City, IA 52240
Chspel Hill, NC 27514

1 Mr. Wallace Feurzeig
Dr. William Chase Bolt Beranek & Newman, Inc.
Department of Psychology 50 Moulton St.
Carnegie Mellon University Cambridge, MA 02138
Pittsburgh, PA 15213

1 Dr. Victor Fields
Dr. Micheline Chi Dept. of Psychology
Learning R & D Center Montgomery College
University of Pittsburgh Rockville, MD 20S50
3939 O'Hara Street
Pittsburgh, PA 1513 1 Univ. Prof. Dr. Gerhard Fischer

Liebiggasse 5/3
Dr. Allan M. Collins A 1010 Vienna
Bolt Beranek & Newman, The. AUSTRIA
5C Moulton Street
Cambridge, Ma 021 38 1 DR. JOHN D. FOLLEY JR.

APPLIED SCTENCES ASSOCIATES INC
Dr. Lynn A. Cooper VALENCIA, PA 16059
LR DC
University of Pittsburgh 1 Dr. John R. Frederiksen

o3939 n'lara Street Bolt Beranek & Newman
Pittsburgh, PA 15213 50 Moulton Street

Cambridge, MA 02138

TT/Kehler March 25, 1982 Page 8

Non Govt Non Govt

1 Dr. Alinda Friedman 1 Dr. James R. Hoffman
Department of Psychology Department of Psychology
University of Alberta University of Delaware
Edmonton, Alberta Newark, DE 19711
CANADA T6G 2E9

1 Dr. Kristina Hooper
1 DR. ROBERT GLASER Clerk Kerr Hall

LRDC University of California
UNIVERSITY OF PITTSBURGH Santa Cruz, CA 95060
3939 O'HARA STREET
PITTSBURGH, PA 15213 1 Glenda Greenwald, Ed.

"Human Intelligence Newsletter"
1 Dr. Marvin D. Glock P. 0. Box 1163

217 Stone Hall Birmingham, MI 48012
Cornell University
Ithaca, NY 14853 1 Dr. Earl Hunt

Dept. of Psychology
I Dr. Daniel Gopher University of Washington

Industrial & Management Engineering Seattle, WA 98105
Technion-Israel Institute of Technology
Haifa 1 Dr. Ed Hutchins
ISRAEL Navy Personnel R&D Center

San Diego, CA 92152
1 DR. JAMES G. GREENO

LRDC I DR. KAY INABA
UNIVERSITY OF PITTSBURGH 21116 VANCWEN ST
3939 O'HARA STREET CANOGA PARK, CA 9130?
PITTSBURGH, PA 15213

1 Dr. Steven W. Keele
1 Dr. Ron 17ambleton Dept. of Psychology

School of Education University of Oregon
University of Massechusetta Eugene, OR 97403
Amherst, MA 01002

1 Dr. Walter Kintsch
1 Dr. Harold Hawkins Department of Psychology

Department of Psychology University of Colorado
University of Oregon Boulder, CO 80302
Eugene OR 971103

1 Dr. David Kieras
1 Dr. Parbara Hayes-Roth Department of Psychology

The Rand Corporation University of Arizona
1700 Main Street Tuseon, AZ 85721
Santa Monica, CA 90406

1 Dr. Stephen Kosslyn
1 Dr. Frederick Hayes-Roth Harvard University

The Rand Corporation Department of Psychology
1700 Main Street 33 Kirkland Street
Santa Monica, CA 90406 Cambridge, MA 02138

TI/Kehler March 25, 1982 Page 9

Non Govt be Govt

Dr. Marcy Lansman 1 Committee on Human Factors

Department of Psychology, NT 25 JH 811
University of Washington 2101 Constitution Ave. W
Seattle, WA 98195 Washington, DC 20418

Dr. Jill Larkin 1 Dr. Jesse Orlansky
Department of Psychology Institute for Defense Analyses
Carnegie Mellon University 400 Army Navy Drive
Pittsburgh, PA 15213 Arlington, VA 22202

Dr. Alan Lesgold 1 Dr. Seymour A. Papert
Learning R&D Center Massachusetts Institute of Technology

University of Pittsburgh Artificial Intelligence Lab
Pittsburgh, PA 15260 545 Technology Square

Cambridge, MA 02139
Dr. Michael Levine
Department of Educational Psychology 1 Dr. James A. Paulson
210 Education Bldg. Portland State University
University of Illinois P.O. Box 751
Champaign, IL 61801 Portland, OR 97207

Dr. Robert Linn 1 Dr. James W. Pellegrino
College of Education University of California,
University of Illinois Santa Barbara
Urbana, IL 61801 Dept. of Psychology

Santa Barabara, CA 93106
Dr. Erik McWilliams
Science Education Dev. and Research 1 MR. LUTGI PETRULLO
National Science Foundation 2131 N. EDGEWOOD STREET
Washington, DC 20550 ARLINGTON, VA 22207

Dr. Mark Miller 1 Dr. Martha Polson

TI Computer Science Lab Department of Psychology
C/O 2824 Winterplace Circle Campus Box 346
Plano, TY 75075 University of Colorado

Boulder, CO 8030o9
Dr. Allen Munro
Behaviorsl Technology Laboratories 1 DR. PETER POL ON
1F41; Elena Ave., Fourth Floor DEPT. OF PSYCHOLOGY
Redondo Beach, C/t 90277 UNIVERSTTY OF COLORADO

BOULDER, CO 80300
Dr. Donald A Norman
Dept. of Psychology C-009 1 Dr. Steven E. Poltrock
Univ. of California, San Diego Department of Psychology
La Jolla, CA 92093 University of Denver

Denver,CO 80208

TI/Kehler March 25, 1982 Page 10

Non Govt Non Govt

MINRAT M. L. RAUCH 1 DR. ROBERT J. SEIDEL
P II 4 INSTRUCTTONAL TECHNOLOGY GROUP
BUNDESMINISTERIUM DER VERTEIDIGUNG HUMRRO
POSTFACH 132 300 N. WASHTNGTON 'ST.
D-5.1 BONN 1, GERMANY ALEXANDRIA, VA 22314

Dr. Fred Reif I Committee on Cognitive Research
SESAME % Dr. Lonnie R. Sherrod
c/o Physics Department Social Science Research Council
University of CaltforniP. 605 Third Avenue
Berkely, CA 94720 New York, NY 10016

Dr. Lauren Resnick 1 Robert S. Siegler
LRDC Associate Professor
University of Pittsburgh Carnegie-Mellon niversity
3939 O'Hara Street Department of Psychology
Pittsburgh, PA 15213 Schenley Park

Pittsburgh, PA 15213
Mary Riley
LRDC 1 Dr. Edward E. Smith
University of Pittsburgh Bolt Beranek & Newman, Inc.
3939 O'Hara Street 50 Moulton Street
Pittsburgh, PA 15211 Cambridge, MA 02118

Dr. Andrew M. Rose 1 Dr. Robert Smith
American Tnstitutes for Research Department of Computer Science
10r)5 Thomas Jefferson St. NW Rutgers University
Washington, DC 20007 New Brunswick, NJ 0R903

Dr. Ernst Z. Rothkopf 1 Dr. Richard Snow
Eell Laboratories School of Education
6Cn Mountain Avenue Stanford University
Murray Hill, NJ 07974 Stanford, CA 94305

Dr. David Rumelhart 1 Dr. Robert Sternberg
Center for Human Information Processing Dept. of Psychology
Univ. of California, San Diego Yale University
La Jolla, CA 92093 Box 11A, Yale Station

New Haven, CT 06520
DR. WALTER SCHNEIDER
DEPT. OF PSYCHOLOGY 1 DR. ALBERT STEVENS
UNTVERSTTY OF ILLINOTS BOLT BERANEK & NEWMAN, INC.
CPYAMPATGN, TL 618_0 50 MOULTON STREET

CAMBRIDGE, MA 02138
Dr. Ale.n Schoenfeld
Department. of Mathmaties 1 David E. Stone, Ph.D.
Hamilton College Hazeltine Corporation
Clinton, MY 1323 7680 Old Springhouse Road

McLean, VA 22102

TI/Kehier March 25, 1982 Page 11

Non Govt Non Govt

DR. PATRICK SUPPES 1 Dr. Keith T. Wescourt
TNSTITUTE FOR MATHEMATICAL STUDIES IN Information Sciences Dept.

THE SOCIAL SCIENCES The Rand Corporation
STANFORD UNIVERSITY 1700 Main St.
STANFORD, CA 911305 Santa Monica, CA 90406

Dr. Kikumi Tatsuoka
Computer Based Fducation Research

Laboratory
252 Engineering Research Laboratory
University of Tllinois
Urbpna, IL 61P01

Dr. John Thomas
1M Thomas J. Watson Research Center
P.O. Box 218
Yorktown Heights, NY 10598

DR. PERRY THORNDYKE
THE RAND CORPORATTON
1700 MATN STREET

SANTA MONTCA, CA 901106

Dr. Douglas Towne
Univ. of So. California
Pehevioral Technology Labs
1845 S. Elena Ave.
Pedondo Peach, CA 90277

Dr. J. .IhlPner

Perceptronics, Tne.
6271 Varip1 Avenue
Woodland Hills, CA 91364

Dr. Benton J. Underwood
Dept. of Psychology
Northwestern University

Evanston, TL A020l1

Dr. David .1. Weiss
NW@O Flliott Poll
University of Minnesota
75 F. River Rond
W!inneppolis, Mr 551455

DR. GERSHON WFLTMAN
PFRCEPTRONICS TNC.
F?71 VARIEL AVE.
WOODLANP HTLLS, CA 91367

